Câu hỏi:

13/07/2024 2,786

Trong không gian, hai mặt phẳng song song với nhau khi và chỉ khi:

A. Có một mặt phẳng chứa hai đường thẳng phân biệt cùng song song với mặt phẳng còn lại.

B. Hai mặt phẳng cùng song song với một đường thẳng.

C. Hai mặt phẳng cùng song song với mặt phẳng thứ ba.

D. Hai mặt phẳng không có điểm chung.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là: D

Hai mặt phẳng được gọi là song song với nhau nếu chúng không có điểm chung.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a)

Media VietJack

Trong mp(SAB), xét DSAB có M, N lần lượt là trung điểm của SA, SB nên MN là đường trung bình của tam giác

Do đó MN // AB.

Mà AB // CD (giả thiết) nên MN // CD.

Lại có CD (SCD) nên MN // (SCD).

b)

Media VietJack

Theo câu a, MN là đường trung bình của DSAB nên MN = \(\frac{1}{2}\)AB

Mà AB = 2CD hay CD = \(\frac{1}{2}\)AB

Do đó MN = CD.

Xét tứ giác MNCD có: MN // CD và MN = CD nên MNCD là hình bình hành

Suy ra DM // CN

Mà CN (SBC) nên DM // (SBC).

c)

Media VietJack

• Trong mp(ABCD), gọi O là giao điểm của AC và BD.

Do AB // CD, theo hệ quả định lí Thalès ta có: \(\frac{{OB}}{{DO}} = \frac{{AB}}{{CD}} = \frac{2}{1}\)

Suy ra \(\frac{{OB}}{{DO + OB}} = \frac{2}{{1 + 2}}\) hay \(OB\)\(\frac{{OB}}{{DB}} = \frac{2}{3}\)

• Trong mp(SDB), xét DSDB có \(\frac{{SI}}{{SD}} = \frac{{OB}}{{DB}} = \frac{2}{3}\) nên IO // SB (theo định lí Thalès đảo)

Mà IO (AIC) nên SB // (AIC).

Lời giải

Lời giải

a)

Media VietJack

Trong mp(CDHK), qua K vẽ đường thẳng song song với CD, cắt DH tại N.

Trong mp(BCKF), qua K vẽ đường thẳng song song với BC, cắt BF tại P.

Ta có: NK // CD, mà CD (ACBD) nên NK // (ABCD).

           KP // BC, mà BC (ACBD) nên KP // (ABCD).

           NK, KP cắt nhau tại K trong mp(NPK).

Do đó (NPK) // (ABCD).

Khi đó mp(R) qua K và song song với (ABCD) chính là mp(NPK).

Trong mp(ADHE), qua N vẽ đường thẳng song song với AD, cắt AE tại Q.

Khi đó mp(R) là mp(NKPQ).

Vậy: (NKPQ) ∩ (ADHE) = QN;

         (NKPQ) ∩ (CDHK) = NK;

         (NKPQ) ∩ (BCKF) = KP;

         (NKPQ) ∩ (ABFE) = PQ.

b)

Media VietJack

Ta có: DH cắt NK tại N, mà NK (R) nên giao điểm của DH và (R) là điểm N.

Theo bài, I là giao điểm của DH và (R) nên điểm I và điểm N trùng nhau.

Tương tự ta cũng có điểm J trùng với điểm P.

Ta có: (ABCD) // (EFMH) và (R) // (ABCD) nên (EFMH) // (R) // (ABCD).

Lại có, hai cát tuyến FB, HD cắt ba mặt phẳng song song (EFMH), (R), (ABCD) lần lượt tại F, J, B và H, I, D nên theo định lí Thalès ta có: \(\frac{{FJ}}{{HI}} = \frac{{FB}}{{HD}}\).

Mặt khác, trong mp(CDKH), tứ giác CDIK có CK // DI (do CK // DH) và IK // CD

Do đó CDIK là hình bình hành, suy ra DI = CK = 40 cm.

Khi đó HI = DH – DI = 75 – 40 = 35 (cm).

Vì vậy, từ \(\frac{{FJ}}{{HI}} = \frac{{FB}}{{HD}}\) ta có: \(\frac{{FJ}}{{35}} = \frac{{60}}{{75}}\), suy ra \(FJ = \frac{{35.60}}{{75}} = 28\) (cm).

Vậy FJ = 28 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay