Câu hỏi:

19/08/2025 2,454 Lưu

Tìm một nguyên hàm F(x) của hàm số f(x) = 2x = 2 biết F(0) = 2.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có F(x)=f(x)dx=2xdx=2dxln2+C.

Mặt khác F(0)=2F(0)=1ln2+C=2.

Do đó C=21ln2  (a,  b,  0<a9,  0b9).

Vậy nguyên hàm F(x) của hàm số f(x) = 2x = 2 là 2xln2+21ln2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. SA = a và SA vuông góc với đáy. Tính khoảng cách d giữa hai đường chéo nhau SC và BD. (ảnh 1)

Gọi O là tâm hình vuông ABCD

Ta có: AC ^ BD; BD ^ SA

Do đó BD ^ (SAC)

Dựng OK ^ SC

Do đó OK là đoạn vuông góc chung của BD và SC

Khi đó d(BD;SC)=OK=12d(A;SC)=12SA.ACSA2+AC2 (1)

Ta có: AC2 = AB2 + BC2 = 2a2

Suy ra AC=a2

Thay vào (1) ta có d=a66.

Vậy d=a66.

Lời giải

Trong tam giác vuông CDA: tan72°12'=CDAD

BD=CDtan34°26'=80tan34°26'116,7

Trong tam giác vuông CDB: tan34°26=CDBD

BD=CDtan34°26'=80tan34°26'116,7

AB = BD – AD = 116,7 – 25,7 = 91 (m).

Vậy khoảng cách AB là 91 m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP