Câu hỏi:

11/07/2024 2,673

Cho tứ giác ABCD, O là giao điểm của hai đường chéo AC và BD. Gọi  G; G’ theo thứ tự là trọng tâm của tam giác OAB và OCD. Biểu diễn vecto GG'.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ giác ABCD, O là giao điểm của hai đường chéo AC và BD. Gọi  G; G’ theo thứ tự là trọng tâm của tam giác OAB và OCD. Biểu diễn vecto  . (ảnh 1)

Vì G’ là trọng tâm của tam giác OCD nên d=a66 (1)

Vì  G  là trọng tâm của tam giác OAB  nên GO+GA+GB=0

Khi đó GO=GAGB.

Từ (1) và (2) suy ra GG'=13GAGB+GC+GD=13AC+BD

Vậy GG'=13AC+BD.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số: 

y = x3 − mx2 − (m − 6)x + 1 đồng biến trên (0; 4).

Xem đáp án » 12/07/2024 13,959

Câu 2:

Từ một đỉnh tháp chiều cao CD = 80 m, người ta nhìn hai điểm A và B trên mặt đất dưới các góc nhìn là 72º12’ và 34º26’. Ba điểm A, B, D thẳng hàng. Tính khoảng cách AB?

Xem đáp án » 12/07/2024 12,715

Câu 3:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. SA = a và SA vuông góc với đáy. Tính khoảng cách d giữa hai đường chéo nhau SC và BD.

Xem đáp án » 12/07/2024 10,694

Câu 4:

Tìm m để hàm số y=2xxm+1 xác định trên (0; 2).

Xem đáp án » 12/07/2024 7,965

Câu 5:

Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x3 − 3(m + 2)x2 + 3(m2 + 4m)x + 1 nghịch biến trên khoảng (0; 1).

Xem đáp án » 12/07/2024 7,506

Câu 6:

Cho a là góc tù và sinα=45. Tính giá trị của biểu thức: A = 2sin a – cos a.

Xem đáp án » 11/07/2024 6,090

Câu 7:

Có 40 học sinh giỏi, mỗi em giỏi ít nhất 1 môn. Có 22 em giỏi Văn, 25 em giỏi Toán, 20 em giỏi Anh. Có 8 em giỏi đúng hai môn Văn, Toán. Có 7 em giỏi đúng hai môn Toán, Anh. Có 6 em giỏi đúng hai môn Anh, Văn. Hỏi có bao nhiêu em giỏi cả ba môn Văn, Toán, Anh?

Xem đáp án » 12/07/2024 4,638

Bình luận


Bình luận