Câu hỏi:

19/08/2025 5,888 Lưu

Cho hàm số y = f(x) có đạo hàm f '(x) trên R. Hình vẽ bên là đồ thị của hàm số y = f '(x). Hàm số g(x) = f(x − x2) nghịch biến trên khoảng nào trong các khoảng dưới đây:

Cho hàm số y = f(x) có đạo hàm f '(x) trên R . Hình vẽ bên là đồ thị của hàm số y = f '(x). Hàm số g(x) = f(x − x^2) nghịch biến trên khoảng nào trong các khoảng dưới đây:   (ảnh 1)

A. ;  52;

B. 32;  +;

C. 12;  +;

D. ;  12.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Ta có: g' (x) = (1 – 2x)f '(x – x2)

Hàm số y = g(x) nghịch biến trên (a; b)

Û g' (x) ≤ 0 "x Î (a; b) và bằng 0 tạ hữu hạn điểm

Ta có: g' (1) = 3f '(–2) > 0

Do đó loại đáp án A, B, D ta chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. SA = a và SA vuông góc với đáy. Tính khoảng cách d giữa hai đường chéo nhau SC và BD. (ảnh 1)

Gọi O là tâm hình vuông ABCD

Ta có: AC ^ BD; BD ^ SA

Do đó BD ^ (SAC)

Dựng OK ^ SC

Do đó OK là đoạn vuông góc chung của BD và SC

Khi đó d(BD;SC)=OK=12d(A;SC)=12SA.ACSA2+AC2 (1)

Ta có: AC2 = AB2 + BC2 = 2a2

Suy ra AC=a2

Thay vào (1) ta có d=a66.

Vậy d=a66.

Lời giải

Ta có y = 3x2 – 2mx – (m – 6)

Để hàm số đồng biến trên (0; 4)

Û y’ ≥ 0 "x Î (0; 4) và y′ = 0 tại một số giá trị hữu hạn.

3x2 − 2mx − (m − 6) ≥ 0 x (0; 4)

3x2 + 6 ≥ m(2x + 1)

Với mọi x (0; 4) ta có 2x + 1 > 0 nên

f(x)=3x2+62x+1m   x(0;4)

m ≤ min(0; 4) của f(x)

Xét hàm số f(x)=3x2+62x+1trên (0; 4) ta có:

f'(x)=6x2+6x122x+12=0

x=1(0;4)    x=2(0;4)

Xét bảng biến thiên:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số:  y = x^3 − mx^2 − (m − 6)x + 1 đồng biến trên (0; 4). (ảnh 1)

Dựa vào bảng biến thiên ta thấy min(0; 4) của f(x) = f(1) = 3 Û m ≤ 3

Khi m = 3 ta có : y′ = 3x2 − 6x + 3 = 3(x − 1)2 ≥ 0 x (0;4)

Vậy với m ≤ 3 thì hàm số đồng biến trên (0; 4).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP