Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có:
⇔ (a+b+c)(ab+bc+ac)=abc
⇔ a2b + abc + a2c + ab2 + b2c + abc + abc + bc2 + ac2 = abc
⇔ (a2b + ab2) + b2c + (ac2 + bc2) + a2c + 2abc = 0
⇔ (a2b + ab2) + (b2c + abc) + (ac2 + bc2) + (a2c + abc) = 0
⇔ ab(a + b) + bc(b + a) + c2(a + b) + ac(a + b) = 0
⇔ (a + b)(ab + bc + c2 + ac) = 0
⇔ (a + b)[(ab + bc) + (c2 + ac)] = 0
⇔ (a + b)[b(a + c) + c(c + a)] = 0
⇔ (a + b)(a + c)(b + c) = 0
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật và C là tập hợp các hình vuông. Khi đó:
Câu 5:
khối chóp S.ABC có đáy ABC là tam giác vuông cân có cạnh huyền BC = a và SA vuông góc với mặt phẳng đáy. Biết góc giữa mặt phẳng (SBC) và mặt phẳng (ABC) bằng 45°. Thể tích của hình chóp S.ABC là:
Câu 6:
Câu 7:
Cho đường tròn tâm (O), từ điểm M ở bên ngoài đường tròn (O) kẻ các tiếp tuyến MA, MB (A, B là các tiếp điểm), kẻ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D, O và B nằm về hai phía so với cát tuyến MCD).
a) Chứng minh tứ giác MAOB nội tiếp.
b) Chứng minh MB2 = MC . MD.
c) Gọi H là giao điểm của AB và OM. Chứng minh AB là tia phân giác của .
về câu hỏi!