Cho tam giác ABC vuông tại A(AB < AC), gọi O là trung điểm của đoạn thẳng BC. Trên tia đối của tia OA lấy điểm K sao cho OA = OK. Vẽ AH vuông góc BC tại H, trên tia HC lấy HD = HA. Đường thẳng vuông góc với BC tại D cắt AC tại E.
a) Chứng minh tam giác ABC bằng tam giác CKA.
b) Chứng minh AB = AE.
c) Gọi M là trung điểm của đoạn thẳng BE. Tính số đo góc CHM.
d) Chứng minh: \[\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{A{H^2}}}\].
Cho tam giác ABC vuông tại A(AB < AC), gọi O là trung điểm của đoạn thẳng BC. Trên tia đối của tia OA lấy điểm K sao cho OA = OK. Vẽ AH vuông góc BC tại H, trên tia HC lấy HD = HA. Đường thẳng vuông góc với BC tại D cắt AC tại E.
a) Chứng minh tam giác ABC bằng tam giác CKA.
b) Chứng minh AB = AE.
c) Gọi M là trung điểm của đoạn thẳng BE. Tính số đo góc CHM.
d) Chứng minh: \[\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{A{H^2}}}\].
Câu hỏi trong đề: 7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án !!
Quảng cáo
Trả lời:

a) Xét tứ giác ABKC có O là trung điểm BC và AK
Suy ra: ABKC là hình bình hành
Mà \(\widehat {BAC} = 90^\circ \)nên ABKC là hình chữ nhật
Do đó: AC = BC; AB = KC
Xét ∆ABC và ∆CKA có:
AB = CK
BC = AK
AC chung
Suy ra: ∆ABC = ∆CKA (c.c.c)
b) Xét tứ giác ABDE có \(\widehat {BDE} + \widehat {ABE} = 90^\circ + 90^\circ = 180^\circ \)
Suy ra: ABDE là tứ giác nội tiếp
Suy ra: \(\widehat {BDA} = \widehat {AEB}\)
Xét tam giác AHD vuông tại H có AH = HD
Suy ra: Tam giác AHD vuông cân tại H ⇒ \(\widehat {HDA} = 45^\circ \)
⇒ \[\widehat {AEB} = 45^\circ \]
Xét tam giác AEB vuông tại A có \[\widehat {AEB} = 45^\circ \]
⇒ \[\widehat {ABE} = 45^\circ \]
⇒ Tam giác AEB vuông cân tại A do đó AB = AE
c) Vì M là trung điểm BE nên ta có: MA = MB = ME (do tam giác ABE vuông tại A nên đường trung tuyến bằng nửa cạnh huyền)
Tương tự trong tam giác BDE vuông tại D có DM là đường trung tuyến
Nên DM = BM = ME
Suy ra: DM = MA = BM = ME
Xét tam giác MHA và tam giác MHD có:
Chung MH
HD = HA (giả thiết)
DM = MA
Suy ra: ∆MHA = ∆MHD (c.c.c)
⇒ \(\widehat {DHM} = \widehat {MHA}\)
Mà \(\widehat {DHM} + \widehat {MHA} = 90^\circ \) nên \(\widehat {DHM} = \widehat {MHA} = 45^\circ \)
Vậy \(\widehat {CHM} = 45^\circ \)
d) SABC = \(\frac{1}{2}.AH.BC = \frac{1}{2}.AB.AC\)
⇒ AH.BC = AB.AC
⇒AH2.BC2 = AB2.AC2
⇒ \[\frac{1}{{A{H^2}}} = \frac{{B{C^2}}}{{A{B^2}.A{C^2}}}\]
Mà BC2 = AB2 + AC2 nên:
⇒ \[\frac{{A{C^2} + A{B^2}}}{{A{B^2}.A{C^2}}} = \frac{1}{{A{H^2}}}\]
⇒ \[\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{A{H^2}}}\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trường hợp 1: Xếp 4 người vợ ngồi cạnh nhau có 4! cách
+) Xếp 4 người chồng ngồi cạnh nhau VVVVCCCC hoặc CCCCVVVV có 2 cách
Vợ chỉ được ngồi cạnh chồng của mình nên, xếp 3 người chồng (không được gạch chân) Có 3! cách xếp
⇒ có 4!.2.3! cách
+) Xếp 3 người chồng ngồi cạnh nhau CVVVVCCC hoặc CCCVVVVC có 2 cách xếp
Xếp 2 người chồng (không được gạch chân) có 2 cách xếp
⇒ có 4!.2.2 cách
+) Xếp 2 người chồng ngồi cạnh nhau CCVVVVCC có 1 cách
Xếp 2 người chồng (không được gạch chân) có 2 cách xếp
⇒ có 4!.2
Vậy trường hợp 1 có 4!.2.3! + 4!.2.2 + 4!.2 = 432cách.
Trường hợp 2: Xếp 3 người vợ ngồi cạnh nhau
Xếp 4 người vợ vào 4 vị trí có 4! cách
+) 4 người chồng ngồi cạnh nhau: VCCCCVVV hoặc VVVCCCCV có 2 cách
Xếp 2 người chồng không được gạch chân có 2 cách xếp
⇒ có: 4!.2.2 cách
+) 3 người chồng ngồi cạnh nhau: VCCCVVVC hoặc CVVVCCCV có 2 cách
⇒ có: 4!.2 cách
+ 2 người chồng ngồi cạnh nhau: VCCVVVCC hoặc CCVVVCCVcó 2 cách xếp
⇒ có: 4!.2 cách
Vậy trường hợp này có 4!.2.2 + 4!.2 + 4!.2 = 192
Trường hợp 3: 2 người vợ ngồi cạnh nhau
Xếp 4 người vợ vào 4 vị trí có 4! cách
+) 4 người chồng ngồi cạnh nhau VVCCCCVV có 1 cách
Có 2 cách xếp 2 người chồng không có gạch chân
⇒ có: 4!.2
+) 3 người chồng ngồi cạnh nhau VVCCCVVC hoặc CVVCCCVV có 2 cách
⇒ có: 4!.2
+) 2 người chồng ngồi cạnh nhau CVVCCVVC hoặc VVCCVVCC hoặc CCVVCCVV hoặc VCCVVCCV có 4 cách xếp
⇒ có: 4!.4
Vậy trường hợp 3 có 4!.2 + 4!.2 + 4!.4 = 192 cách
Vậy có tất cả số cách là:
432 + 192 + 192 = 816 cách.
Lời giải
Gọi a là chiều dài đúng của cây cầu
Suy ra: a = 152m ± 0,2m
⇒ 152 – 0,2 ≤ a ≤ 152 + 0,2
⇒ 151,8 ≤ a ≤ 152,2
Vậy chiều dài đúng của cây cầu là một số nằm trong khoảng 151,8m đến 152,2m
Sai số tương đối = 0,2 : 152 . 100% ≈ 0,13%.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.