Câu hỏi:
12/07/2024 2,406Cho tam giác ABC vuông tại A(AB < AC), gọi O là trung điểm của đoạn thẳng BC. Trên tia đối của tia OA lấy điểm K sao cho OA = OK. Vẽ AH vuông góc BC tại H, trên tia HC lấy HD = HA. Đường thẳng vuông góc với BC tại D cắt AC tại E.
a) Chứng minh tam giác ABC bằng tam giác CKA.
b) Chứng minh AB = AE.
c) Gọi M là trung điểm của đoạn thẳng BE. Tính số đo góc CHM.
d) Chứng minh: \[\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{A{H^2}}}\].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Xét tứ giác ABKC có O là trung điểm BC và AK
Suy ra: ABKC là hình bình hành
Mà \(\widehat {BAC} = 90^\circ \)nên ABKC là hình chữ nhật
Do đó: AC = BC; AB = KC
Xét ∆ABC và ∆CKA có:
AB = CK
BC = AK
AC chung
Suy ra: ∆ABC = ∆CKA (c.c.c)
b) Xét tứ giác ABDE có \(\widehat {BDE} + \widehat {ABE} = 90^\circ + 90^\circ = 180^\circ \)
Suy ra: ABDE là tứ giác nội tiếp
Suy ra: \(\widehat {BDA} = \widehat {AEB}\)
Xét tam giác AHD vuông tại H có AH = HD
Suy ra: Tam giác AHD vuông cân tại H ⇒ \(\widehat {HDA} = 45^\circ \)
⇒ \[\widehat {AEB} = 45^\circ \]
Xét tam giác AEB vuông tại A có \[\widehat {AEB} = 45^\circ \]
⇒ \[\widehat {ABE} = 45^\circ \]
⇒ Tam giác AEB vuông cân tại A do đó AB = AE
c) Vì M là trung điểm BE nên ta có: MA = MB = ME (do tam giác ABE vuông tại A nên đường trung tuyến bằng nửa cạnh huyền)
Tương tự trong tam giác BDE vuông tại D có DM là đường trung tuyến
Nên DM = BM = ME
Suy ra: DM = MA = BM = ME
Xét tam giác MHA và tam giác MHD có:
Chung MH
HD = HA (giả thiết)
DM = MA
Suy ra: ∆MHA = ∆MHD (c.c.c)
⇒ \(\widehat {DHM} = \widehat {MHA}\)
Mà \(\widehat {DHM} + \widehat {MHA} = 90^\circ \) nên \(\widehat {DHM} = \widehat {MHA} = 45^\circ \)
Vậy \(\widehat {CHM} = 45^\circ \)
d) SABC = \(\frac{1}{2}.AH.BC = \frac{1}{2}.AB.AC\)
⇒ AH.BC = AB.AC
⇒AH2.BC2 = AB2.AC2
⇒ \[\frac{1}{{A{H^2}}} = \frac{{B{C^2}}}{{A{B^2}.A{C^2}}}\]
Mà BC2 = AB2 + AC2 nên:
⇒ \[\frac{{A{C^2} + A{B^2}}}{{A{B^2}.A{C^2}}} = \frac{1}{{A{H^2}}}\]
⇒ \[\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{A{H^2}}}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có 4 cặp vợ chồng được xếp ngồi trên 1 chiếc ghế dài có 8 chỗ. Biết rằng mỗi người vợ chỉ ngồi cạnh chồng mình hoặc ngồi cạnh 1 người phụ nữ khác. Hỏi có bao nhiêu cách sắp xếp chỗ ngồi thỏa mãn?
Câu 2:
Một người bắt đầu đi làm được nhận được số tiền lương là 7 000 000 đồng một tháng. Sau 36 tháng người đó được tăng lương 7%. Hằng tháng người đó tiết kiệm 20% lương để gửi vào ngân hàng với lãi suất 0,3%/tháng theo hình thức lãi kép (nghĩa là lãi của tháng này được nhập vào vốn của tháng kế tiếp). Biết rằng người đó nhận lương vào đầu tháng và số tiền tiết kiệm được chuyển ngay vào ngân hàng. Hỏi sau 36 tháng tổng số tiền người đó tiết kiệm được (cả vốn lẫn lãi) là bao nhiêu? (làm tròn đến hàng nghìn).
Câu 3:
Kết quả đo chiều dài của một cây cầu được ghi là 152m ± 0,2m, điều đó có nghĩa là gì? Tìm sai số tương đối.
Câu 4:
Cho hai tập hợp A = [m – 4; 1], B = (–3; m]. Tính tổng tất cả các giá trị nguyên của m để A ∪ B = B.
Câu 5:
Một chiếc đồng hồ đánh chuông, số tiếng chuông được đánh đúng bằng số mà kim giờ chỉ tại thời điểm đánh chuông. Hỏi một ngày đêm đồng hồ đó đánh bao nhiêu tiếng chuông?
Câu 6:
Bảng giá cước của hãng taxi được cho như sau: Giá mở cửa 11 000 đồng. Giá tiếp theo từ 0,8km đến 30km là 15 800 đồng/1km. Từ km thứ 31 trở đi giá 12 500 đồng/1km. Quí thời gian chờ từ 5 phút đến 1 giờ là 3000 đồng. Giá trên đã bao gồm thuế VAT.
a) Gọi y (đồng) là số tiền khách phải trả sau khi đi x (km). Lập hàm số của y theo x. (Giả sử không tính thời gian chờ và phí cầu đường, bến bãi).
b) Một hàn khách thuê taxi quãng đường 40km phải trả số tiền là bao nhiêu?
về câu hỏi!