Câu hỏi:

12/07/2024 4,333 Lưu

Cho tam giác ABC vuông tại A(AB < AC), gọi O là trung điểm của đoạn thẳng BC. Trên tia đối của tia OA lấy điểm K sao cho OA = OK. Vẽ AH vuông góc BC tại H, trên tia HC lấy HD = HA. Đường thẳng vuông góc với BC tại D cắt AC tại E.

a) Chứng minh tam giác ABC bằng tam giác CKA.

b) Chứng minh AB = AE.

c) Gọi M là trung điểm của đoạn thẳng BE. Tính số đo góc CHM.

d) Chứng minh: \[\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{A{H^2}}}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A(AB < AC), gọi O là trung điểm của đoạn thẳng BC (ảnh 1)

a) Xét tứ giác ABKC có O là trung điểm BC và AK

Suy ra: ABKC là hình bình hành

\(\widehat {BAC} = 90^\circ \)nên ABKC là hình chữ nhật

Do đó: AC = BC; AB = KC

Xét ∆ABC và ∆CKA có:

AB = CK

BC = AK

AC chung

Suy ra: ∆ABC = ∆CKA (c.c.c)

b) Xét tứ giác ABDE có \(\widehat {BDE} + \widehat {ABE} = 90^\circ + 90^\circ = 180^\circ \)

Suy ra: ABDE là tứ giác nội tiếp

Suy ra: \(\widehat {BDA} = \widehat {AEB}\)

Xét tam giác AHD vuông tại H có AH = HD

Suy ra: Tam giác AHD vuông cân tại H \(\widehat {HDA} = 45^\circ \)

\[\widehat {AEB} = 45^\circ \]

Xét tam giác AEB vuông tại A có \[\widehat {AEB} = 45^\circ \]

\[\widehat {ABE} = 45^\circ \]

Tam giác AEB vuông cân tại A do đó AB = AE

c) Vì M là trung điểm BE nên ta có: MA = MB = ME (do tam giác ABE vuông tại A nên đường trung tuyến bằng nửa cạnh huyền)

Tương tự trong tam giác BDE vuông tại D có DM là đường trung tuyến

Nên DM = BM = ME

Suy ra: DM = MA = BM = ME

Xét tam giác MHA và tam giác MHD có:

Chung MH

HD = HA (giả thiết)

DM = MA

Suy ra: ∆MHA = ∆MHD (c.c.c)

\(\widehat {DHM} = \widehat {MHA}\)

\(\widehat {DHM} + \widehat {MHA} = 90^\circ \) nên \(\widehat {DHM} = \widehat {MHA} = 45^\circ \)

Vậy \(\widehat {CHM} = 45^\circ \)

d) SABC = \(\frac{1}{2}.AH.BC = \frac{1}{2}.AB.AC\)

AH.BC = AB.AC

AH2.BC2 = AB2.AC2

\[\frac{1}{{A{H^2}}} = \frac{{B{C^2}}}{{A{B^2}.A{C^2}}}\]

Mà BC2 = AB2 + AC2 nên:

\[\frac{{A{C^2} + A{B^2}}}{{A{B^2}.A{C^2}}} = \frac{1}{{A{H^2}}}\]

\[\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{A{H^2}}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trường hợp 1: Xếp 4 người vợ ngồi cạnh nhau có 4! cách

+) Xếp 4 người chồng ngồi cạnh nhau VVVVCCCC hoặc CCCCVVVV có 2 cách

Vợ chỉ được ngồi cạnh chồng của mình nên, xếp 3 người chồng (không được gạch chân) Có 3! cách xếp

 có 4!.2.3! cách

+) Xếp 3 người chồng ngồi cạnh nhau CVVVVCCC hoặc CCCVVVVC có 2 cách xếp

Xếp 2 người chồng (không được gạch chân) có 2 cách xếp

 có 4!.2.2 cách

+) Xếp 2 người chồng ngồi cạnh nhau CCVVVVCC có 1 cách

Xếp 2 người chồng (không được gạch chân) có 2 cách xếp

 có 4!.2

Vậy trường hợp 1 có 4!.2.3! + 4!.2.2 + 4!.2 = 432cách.

Trường hợp 2: Xếp 3 người vợ ngồi cạnh nhau

Xếp 4 người vợ vào 4 vị trí có 4! cách

+) 4 người chồng ngồi cạnh nhau: VCCCCVVV hoặc VVVCCCCV có 2 cách

Xếp 2 người chồng không được gạch chân có 2 cách xếp

 có: 4!.2.2 cách

+) 3 người chồng ngồi cạnh nhau: VCCCVVVC hoặc CVVVCCCV có 2 cách

 có: 4!.2 cách
+ 2 người chồng ngồi cạnh nhau: VCCVVVCC hoặc CCVVVCCVcó 2 cách xếp

 có: 4!.2 cách

Vậy trường hợp này có 4!.2.2 + 4!.2 + 4!.2 = 192

Trường hợp 3: 2 người vợ ngồi cạnh nhau

Xếp 4 người vợ vào 4 vị trí có 4! cách

+) 4 người chồng ngồi cạnh nhau VVCCCCVV có 1 cách

Có 2 cách xếp 2 người chồng không có gạch chân

 có: 4!.2

+) 3 người chồng ngồi cạnh nhau VVCCCVVC hoặc CVVCCCVV có 2 cách

 có: 4!.2

+) 2 người chồng ngồi cạnh nhau CVVCCVVC hoặc VVCCVVCC hoặc CCVVCCVV hoặc VCCVVCCV có 4 cách xếp

 có: 4!.4

Vậy trường hợp 3 có 4!.2 + 4!.2 + 4!.4 = 192 cách

Vậy có tất cả số cách là:

432 + 192 + 192 = 816 cách.

Lời giải

Gọi a là chiều dài đúng của cây cầu

Suy ra: a = 152m ± 0,2m

152 – 0,2 ≤ a ≤ 152 + 0,2

151,8 ≤ a ≤ 152,2

Vậy chiều dài đúng của cây cầu là một số nằm trong khoảng 151,8m đến 152,2m

Sai số tương đối = 0,2 : 152 . 100% ≈ 0,13%.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP