Câu hỏi:
12/07/2024 19,314
Cho đường tròn (O) đường kính AB. Trên tiếp tuyến tại A của (O), lấy điểm C. Gọi E là giao điểm của CB với (O). từ O kẻ đường thẳng song song với AE cắt BC tại M.
a) Chứng minh CA2 = CE. CB
b) Chứng minh bốn điểm A; C; O; M cùng thuộc 1 đường tròn
Cho đường tròn (O) đường kính AB. Trên tiếp tuyến tại A của (O), lấy điểm C. Gọi E là giao điểm của CB với (O). từ O kẻ đường thẳng song song với AE cắt BC tại M.
a) Chứng minh CA2 = CE. CB
b) Chứng minh bốn điểm A; C; O; M cùng thuộc 1 đường tròn
Quảng cáo
Trả lời:

a) Vì CA là tiếp tuyến của (O) nên AC ⊥ AB
Lại có: \(\widehat {AEB} = 90^\circ \)(góc nội tiếp chắn nửa đường tròn) nên AE ⊥ CB
Xét trong tam giác CAB vuông tại A có AE là đường cao, áp dụng hệ thức lượng trong tam giác vuông ta có:
CA2 = CE . CB (đpcm)
b) Ta có: AC ⊥ AB (vì AC là tiếp tuyến đường tròn (O)
⇒ ΔCAO vuông tại A
⇒ Ba điểm A;C;O cùng thuộc đường tròn đường kính OC (1)
Vì OM // AE
AE ⊥ CB
⇒ OM ⊥ BC
⇒ ΔOMC vuông tại M
⇒ Ba điểm O; C; M cùng thuộc đường tròn đường kính OC (2)
Từ (1) và (2) suy ra : Bốn điểm A; C; M; O cùng thuộc một đường tròn (đpcm)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trường hợp 1: Xếp 4 người vợ ngồi cạnh nhau có 4! cách
+) Xếp 4 người chồng ngồi cạnh nhau VVVVCCCC hoặc CCCCVVVV có 2 cách
Vợ chỉ được ngồi cạnh chồng của mình nên, xếp 3 người chồng (không được gạch chân) Có 3! cách xếp
⇒ có 4!.2.3! cách
+) Xếp 3 người chồng ngồi cạnh nhau CVVVVCCC hoặc CCCVVVVC có 2 cách xếp
Xếp 2 người chồng (không được gạch chân) có 2 cách xếp
⇒ có 4!.2.2 cách
+) Xếp 2 người chồng ngồi cạnh nhau CCVVVVCC có 1 cách
Xếp 2 người chồng (không được gạch chân) có 2 cách xếp
⇒ có 4!.2
Vậy trường hợp 1 có 4!.2.3! + 4!.2.2 + 4!.2 = 432cách.
Trường hợp 2: Xếp 3 người vợ ngồi cạnh nhau
Xếp 4 người vợ vào 4 vị trí có 4! cách
+) 4 người chồng ngồi cạnh nhau: VCCCCVVV hoặc VVVCCCCV có 2 cách
Xếp 2 người chồng không được gạch chân có 2 cách xếp
⇒ có: 4!.2.2 cách
+) 3 người chồng ngồi cạnh nhau: VCCCVVVC hoặc CVVVCCCV có 2 cách
⇒ có: 4!.2 cách
+ 2 người chồng ngồi cạnh nhau: VCCVVVCC hoặc CCVVVCCVcó 2 cách xếp
⇒ có: 4!.2 cách
Vậy trường hợp này có 4!.2.2 + 4!.2 + 4!.2 = 192
Trường hợp 3: 2 người vợ ngồi cạnh nhau
Xếp 4 người vợ vào 4 vị trí có 4! cách
+) 4 người chồng ngồi cạnh nhau VVCCCCVV có 1 cách
Có 2 cách xếp 2 người chồng không có gạch chân
⇒ có: 4!.2
+) 3 người chồng ngồi cạnh nhau VVCCCVVC hoặc CVVCCCVV có 2 cách
⇒ có: 4!.2
+) 2 người chồng ngồi cạnh nhau CVVCCVVC hoặc VVCCVVCC hoặc CCVVCCVV hoặc VCCVVCCV có 4 cách xếp
⇒ có: 4!.4
Vậy trường hợp 3 có 4!.2 + 4!.2 + 4!.4 = 192 cách
Vậy có tất cả số cách là:
432 + 192 + 192 = 816 cách.
Lời giải
Gọi a là chiều dài đúng của cây cầu
Suy ra: a = 152m ± 0,2m
⇒ 152 – 0,2 ≤ a ≤ 152 + 0,2
⇒ 151,8 ≤ a ≤ 152,2
Vậy chiều dài đúng của cây cầu là một số nằm trong khoảng 151,8m đến 152,2m
Sai số tương đối = 0,2 : 152 . 100% ≈ 0,13%.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.