Câu hỏi:

12/07/2024 1,058

Cho tam giác ABC nội tiếp đường tròn (O); phân giác AD. Vẽ đường tròn (O') đi qua A, D và tiếp xúc với (O). Gọi M, N là giao của AB, AC với (O'). Chứng minh rằng:

a) MN song song với BC.

b) BC là tiếp tuyến của (O').

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC nội tiếp đường tròn (O); phân giác AD. Vẽ đường tròn (O') đi  (ảnh 1)

a) Đường tròn O có ABC nội tiếp nên \[\widehat {{A_3}} = \widehat C\] (chắn cung AB)

Đường tròn O' có AMN nội tiếp nên \[\widehat {{A_3}} = \widehat {{N_1}}\]  (chắn cung AM)

Do đó \[\widehat C = \widehat {{N_1}}\] suy ra MN // BC

b) Ta có: \(\widehat {ADB} = \widehat {{A_2}} + \widehat C\)( góc ngoài tam giác ADC)

mà \[\widehat {{A_3}} = \widehat C\]\[\widehat {{A_1}} = \widehat {{A_2}}\]

Do đó \[\widehat {ADB} = \widehat {{A_3}} + \widehat {{A_1}}\]

Lại có tam giác O'AD cân tại O' nên \(\widehat {O'AD} = \widehat {O'DA}\)

Do đó \(\widehat {O'AD} + \widehat {{A_3}} + \widehat {{A_1}} = \widehat {O'DA} + \widehat {BDA}\) hay \(90^\circ = \widehat {O'DA} + \widehat {BDA}\)

Suy ra: \(\widehat {O'DB} = 90^\circ \)

Vậy BC là tiếp tuyến của (O’).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trường hợp 1: Xếp 4 người vợ ngồi cạnh nhau có 4! cách

+) Xếp 4 người chồng ngồi cạnh nhau VVVVCCCC hoặc CCCCVVVV có 2 cách

Vợ chỉ được ngồi cạnh chồng của mình nên, xếp 3 người chồng (không được gạch chân) Có 3! cách xếp

 có 4!.2.3! cách

+) Xếp 3 người chồng ngồi cạnh nhau CVVVVCCC hoặc CCCVVVVC có 2 cách xếp

Xếp 2 người chồng (không được gạch chân) có 2 cách xếp

 có 4!.2.2 cách

+) Xếp 2 người chồng ngồi cạnh nhau CCVVVVCC có 1 cách

Xếp 2 người chồng (không được gạch chân) có 2 cách xếp

 có 4!.2

Vậy trường hợp 1 có 4!.2.3! + 4!.2.2 + 4!.2 = 432cách.

Trường hợp 2: Xếp 3 người vợ ngồi cạnh nhau

Xếp 4 người vợ vào 4 vị trí có 4! cách

+) 4 người chồng ngồi cạnh nhau: VCCCCVVV hoặc VVVCCCCV có 2 cách

Xếp 2 người chồng không được gạch chân có 2 cách xếp

 có: 4!.2.2 cách

+) 3 người chồng ngồi cạnh nhau: VCCCVVVC hoặc CVVVCCCV có 2 cách

 có: 4!.2 cách
+ 2 người chồng ngồi cạnh nhau: VCCVVVCC hoặc CCVVVCCVcó 2 cách xếp

 có: 4!.2 cách

Vậy trường hợp này có 4!.2.2 + 4!.2 + 4!.2 = 192

Trường hợp 3: 2 người vợ ngồi cạnh nhau

Xếp 4 người vợ vào 4 vị trí có 4! cách

+) 4 người chồng ngồi cạnh nhau VVCCCCVV có 1 cách

Có 2 cách xếp 2 người chồng không có gạch chân

 có: 4!.2

+) 3 người chồng ngồi cạnh nhau VVCCCVVC hoặc CVVCCCVV có 2 cách

 có: 4!.2

+) 2 người chồng ngồi cạnh nhau CVVCCVVC hoặc VVCCVVCC hoặc CCVVCCVV hoặc VCCVVCCV có 4 cách xếp

 có: 4!.4

Vậy trường hợp 3 có 4!.2 + 4!.2 + 4!.4 = 192 cách

Vậy có tất cả số cách là:

432 + 192 + 192 = 816 cách.

Lời giải

Gọi a là chiều dài đúng của cây cầu

Suy ra: a = 152m ± 0,2m

152 – 0,2 ≤ a ≤ 152 + 0,2

151,8 ≤ a ≤ 152,2

Vậy chiều dài đúng của cây cầu là một số nằm trong khoảng 151,8m đến 152,2m

Sai số tương đối = 0,2 : 152 . 100% ≈ 0,13%.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP