Câu hỏi:
11/07/2024 1,947
Cho hình thang cân ABCD có CD = 2AB = 2a,(a > 0), \(\widehat {DAB}\) = 120°, AH vuông góc CD tại H. Tính \(\overrightarrow {AH} \left( {\overrightarrow {CD} - 4\overrightarrow {AD} } \right),\overrightarrow {AC} .\overrightarrow {BH} \).
Cho hình thang cân ABCD có CD = 2AB = 2a,(a > 0), \(\widehat {DAB}\) = 120°, AH vuông góc CD tại H. Tính \(\overrightarrow {AH} \left( {\overrightarrow {CD} - 4\overrightarrow {AD} } \right),\overrightarrow {AC} .\overrightarrow {BH} \).
Quảng cáo
Trả lời:
Ta có: \(\widehat {DAB}\) = 120° suy ra: \(\widehat {DAH}\) = 30°
Vì ABCD là hình thang cân nên DH = (CD – AB) : 2 = (2a – a) : 2 = \(\frac{a}{2}\)
Xét tam giác vuông ADH ta có:
AD = \(\frac{{AH}}{{\sin 30^\circ }} = \frac{a}{{2.\frac{1}{2}a}} = a\)
AH = \(\sqrt {A{D^2} - D{H^2}} = \sqrt {{a^2} - \frac{{{a^2}}}{4}} = \frac{{a\sqrt 3 }}{2}\)
\(\overrightarrow {AH} \left( {\overrightarrow {CD} - 4\overrightarrow {AD} } \right) = \overrightarrow {AH} .\overrightarrow {CD} - 4\overrightarrow {AH} .\overrightarrow {AD} \)
\[ = AH.CD.\cos \left( {\overrightarrow {AH} ,\overrightarrow {CD} } \right) - 4.AH.AD.\cos \left( {\overrightarrow {AH} ,\overrightarrow {AD} } \right)\]
\[ = AH.CD.\cos 90^\circ - 4.AH.AD.\cos 30^\circ \]
\[ = - 4.\frac{{a\sqrt 3 }}{2}.a.\frac{{\sqrt 3 }}{2} = - 3{a^2}\]
+) \(\overrightarrow {AC} .\overrightarrow {BH} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right)\left( {\overrightarrow {BC} + \overrightarrow {CH} } \right)\)
\(\overrightarrow {AC} .\overrightarrow {BH} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right)\left( {\overrightarrow {BC} + \overrightarrow {CH} } \right)\)
\( = AB.BC.\cos 60^\circ + AB.CH.\cos 90^\circ + {\rm B}{C^2} + BC.CH.\cos 120^\circ \)
\( = a.a.\frac{1}{2} + {a^2} + a.\frac{{3a}}{2}.\left( {\frac{{ - 1}}{2}} \right) = \frac{{3{a^2}}}{4}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trường hợp 1: Xếp 4 người vợ ngồi cạnh nhau có 4! cách
+) Xếp 4 người chồng ngồi cạnh nhau VVVVCCCC hoặc CCCCVVVV có 2 cách
Vợ chỉ được ngồi cạnh chồng của mình nên, xếp 3 người chồng (không được gạch chân) Có 3! cách xếp
⇒ có 4!.2.3! cách
+) Xếp 3 người chồng ngồi cạnh nhau CVVVVCCC hoặc CCCVVVVC có 2 cách xếp
Xếp 2 người chồng (không được gạch chân) có 2 cách xếp
⇒ có 4!.2.2 cách
+) Xếp 2 người chồng ngồi cạnh nhau CCVVVVCC có 1 cách
Xếp 2 người chồng (không được gạch chân) có 2 cách xếp
⇒ có 4!.2
Vậy trường hợp 1 có 4!.2.3! + 4!.2.2 + 4!.2 = 432cách.
Trường hợp 2: Xếp 3 người vợ ngồi cạnh nhau
Xếp 4 người vợ vào 4 vị trí có 4! cách
+) 4 người chồng ngồi cạnh nhau: VCCCCVVV hoặc VVVCCCCV có 2 cách
Xếp 2 người chồng không được gạch chân có 2 cách xếp
⇒ có: 4!.2.2 cách
+) 3 người chồng ngồi cạnh nhau: VCCCVVVC hoặc CVVVCCCV có 2 cách
⇒ có: 4!.2 cách
+ 2 người chồng ngồi cạnh nhau: VCCVVVCC hoặc CCVVVCCVcó 2 cách xếp
⇒ có: 4!.2 cách
Vậy trường hợp này có 4!.2.2 + 4!.2 + 4!.2 = 192
Trường hợp 3: 2 người vợ ngồi cạnh nhau
Xếp 4 người vợ vào 4 vị trí có 4! cách
+) 4 người chồng ngồi cạnh nhau VVCCCCVV có 1 cách
Có 2 cách xếp 2 người chồng không có gạch chân
⇒ có: 4!.2
+) 3 người chồng ngồi cạnh nhau VVCCCVVC hoặc CVVCCCVV có 2 cách
⇒ có: 4!.2
+) 2 người chồng ngồi cạnh nhau CVVCCVVC hoặc VVCCVVCC hoặc CCVVCCVV hoặc VCCVVCCV có 4 cách xếp
⇒ có: 4!.4
Vậy trường hợp 3 có 4!.2 + 4!.2 + 4!.4 = 192 cách
Vậy có tất cả số cách là:
432 + 192 + 192 = 816 cách.
Lời giải
Gọi a là chiều dài đúng của cây cầu
Suy ra: a = 152m ± 0,2m
⇒ 152 – 0,2 ≤ a ≤ 152 + 0,2
⇒ 151,8 ≤ a ≤ 152,2
Vậy chiều dài đúng của cây cầu là một số nằm trong khoảng 151,8m đến 152,2m
Sai số tương đối = 0,2 : 152 . 100% ≈ 0,13%.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.