Câu hỏi:
12/07/2024 4,051
Cho đường thẳng d1: y = mx + 2m – 1 ( với m là tham số) và d2: y = x + 1.
a) Với m = 2. Hãy vẽ các đường thẳng d1 và d2 trên cùng 1 mặt phẳng tọa độ . Tìm tọa độ giao điểm của 2 đường thẳng d1 và d2.
b) Tìm giá trị của m để đường thẳng d1 cắt trục hoành tại điểm có hoành độ bằng –3
c) Chứng minh rằng đường thẳng d1 luôn đi qua một điểm cố định với mọi giá trị của m.
Cho đường thẳng d1: y = mx + 2m – 1 ( với m là tham số) và d2: y = x + 1.
a) Với m = 2. Hãy vẽ các đường thẳng d1 và d2 trên cùng 1 mặt phẳng tọa độ . Tìm tọa độ giao điểm của 2 đường thẳng d1 và d2.
b) Tìm giá trị của m để đường thẳng d1 cắt trục hoành tại điểm có hoành độ bằng –3
c) Chứng minh rằng đường thẳng d1 luôn đi qua một điểm cố định với mọi giá trị của m.
Quảng cáo
Trả lời:
a) Với m = 2 thì ta có: d1: y = 2x + 3; d2: y = x + 1
Vẽ đường thằng đi qua 2 điểm A(0;3) và B\(\left( {\frac{{ - 3}}{2};0} \right)\) ta được d1
Vẽ đường thẳng đi qua 2 điểm C(0;1) và D(–1; 0) ta được d2

Xét phương trình hoành độ giao điểm ta có:
2x + 3 = x + 1
⇔ x = – 2
Suy ra: y = –1
Vậy 2 đường thẳng cắt nhau tại E(–2; –1).
b) d1 cắt trục hoành tại điểm có hoành độ bằng –3 tức là cắt tại điểm P(–3 ;0)
Khi đó ta có: 0 = –3m + 2m – 1
⇔ m = – 1
c) Gọi điểm cố định mà d1 luôn đi qua là M(x0; y0)
Ta có: y0 = mx0 + 2m – 1 = m(x0 + 2) – 1
⇔ m(x0 + 2) = 1 + y0
Để phương trình đúng với mọi m thì:
\(\left\{ \begin{array}{l}{x_0} + 2 = 0\\{y_0} + 1 = 0\end{array} \right.\) ⇔ \(\left\{ \begin{array}{l}{x_0} = - 2\\{y_0} = - 1\end{array} \right.\)
Vậy d1 luôn đi qua điểm cố định là M(–2;–1).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trường hợp 1: Xếp 4 người vợ ngồi cạnh nhau có 4! cách
+) Xếp 4 người chồng ngồi cạnh nhau VVVVCCCC hoặc CCCCVVVV có 2 cách
Vợ chỉ được ngồi cạnh chồng của mình nên, xếp 3 người chồng (không được gạch chân) Có 3! cách xếp
⇒ có 4!.2.3! cách
+) Xếp 3 người chồng ngồi cạnh nhau CVVVVCCC hoặc CCCVVVVC có 2 cách xếp
Xếp 2 người chồng (không được gạch chân) có 2 cách xếp
⇒ có 4!.2.2 cách
+) Xếp 2 người chồng ngồi cạnh nhau CCVVVVCC có 1 cách
Xếp 2 người chồng (không được gạch chân) có 2 cách xếp
⇒ có 4!.2
Vậy trường hợp 1 có 4!.2.3! + 4!.2.2 + 4!.2 = 432cách.
Trường hợp 2: Xếp 3 người vợ ngồi cạnh nhau
Xếp 4 người vợ vào 4 vị trí có 4! cách
+) 4 người chồng ngồi cạnh nhau: VCCCCVVV hoặc VVVCCCCV có 2 cách
Xếp 2 người chồng không được gạch chân có 2 cách xếp
⇒ có: 4!.2.2 cách
+) 3 người chồng ngồi cạnh nhau: VCCCVVVC hoặc CVVVCCCV có 2 cách
⇒ có: 4!.2 cách
+ 2 người chồng ngồi cạnh nhau: VCCVVVCC hoặc CCVVVCCVcó 2 cách xếp
⇒ có: 4!.2 cách
Vậy trường hợp này có 4!.2.2 + 4!.2 + 4!.2 = 192
Trường hợp 3: 2 người vợ ngồi cạnh nhau
Xếp 4 người vợ vào 4 vị trí có 4! cách
+) 4 người chồng ngồi cạnh nhau VVCCCCVV có 1 cách
Có 2 cách xếp 2 người chồng không có gạch chân
⇒ có: 4!.2
+) 3 người chồng ngồi cạnh nhau VVCCCVVC hoặc CVVCCCVV có 2 cách
⇒ có: 4!.2
+) 2 người chồng ngồi cạnh nhau CVVCCVVC hoặc VVCCVVCC hoặc CCVVCCVV hoặc VCCVVCCV có 4 cách xếp
⇒ có: 4!.4
Vậy trường hợp 3 có 4!.2 + 4!.2 + 4!.4 = 192 cách
Vậy có tất cả số cách là:
432 + 192 + 192 = 816 cách.
Lời giải
Gọi a là chiều dài đúng của cây cầu
Suy ra: a = 152m ± 0,2m
⇒ 152 – 0,2 ≤ a ≤ 152 + 0,2
⇒ 151,8 ≤ a ≤ 152,2
Vậy chiều dài đúng của cây cầu là một số nằm trong khoảng 151,8m đến 152,2m
Sai số tương đối = 0,2 : 152 . 100% ≈ 0,13%.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.