Câu hỏi:

12/07/2024 13,438

Cho tam giác ABC vuông tại A (AB < AC) đường cao AH. Từ H vẽ HE và HF lần lượt vuông góc với AB và AC (E thuộc AB, F thuộc AC).

a) Chứng minh: AEHF là hình chữ nhật và AH = EF.

b) Trên tia FC xác định điểm K sao cho FK = AF. Chứng minh tứ giác EHKF là hình bình hành.

c) Biết BC = 5cm, AC = 4 cm. Tính diện tích tam giác ABC

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH. Từ H vẽ HE và HF lần lượt (ảnh 1)

a) Xét tứ giác AEHF:

\(\widehat {EAF} = \widehat {AEH} = \widehat {AFH} = 90^\circ \)

(Do tam giác ABC vuông tại A; HE và HF lần lượt vuông góc với AB và AC).

AEHF là hình chữ nhật.

AH = EF (Tính chất 2 đường chéo của hình chữ nhật).

b) Ta có: FK = AF (gt).

Mà AF = EH (AEHF là hình chữ nhật).

AF = EH = FK.

Ta có: EH // AF (AEHF là hình chữ nhật).

Mà F thuộc AK (gt).

EH // FK.

Xét tứ giác EHKF:

 EH // FK (cmt).

 EH = FK (cmt).

 EHKF là hình bình hành (dhnb).

c) Xét tam giác ABC vuông tại A:

Ta có: BC= AB2 + AC2 (Định lý Pytago).

Thay số: 52 = AB2 + 42.

AB= 9 AB = 3.

Diện tích tam giác ABC vuông tại A: SABC = \(\frac{1}{2}.AB.AC = \frac{1}{2}.3.4 = 6\left( {c{m^2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trường hợp 1: Xếp 4 người vợ ngồi cạnh nhau có 4! cách

+) Xếp 4 người chồng ngồi cạnh nhau VVVVCCCC hoặc CCCCVVVV có 2 cách

Vợ chỉ được ngồi cạnh chồng của mình nên, xếp 3 người chồng (không được gạch chân) Có 3! cách xếp

 có 4!.2.3! cách

+) Xếp 3 người chồng ngồi cạnh nhau CVVVVCCC hoặc CCCVVVVC có 2 cách xếp

Xếp 2 người chồng (không được gạch chân) có 2 cách xếp

 có 4!.2.2 cách

+) Xếp 2 người chồng ngồi cạnh nhau CCVVVVCC có 1 cách

Xếp 2 người chồng (không được gạch chân) có 2 cách xếp

 có 4!.2

Vậy trường hợp 1 có 4!.2.3! + 4!.2.2 + 4!.2 = 432cách.

Trường hợp 2: Xếp 3 người vợ ngồi cạnh nhau

Xếp 4 người vợ vào 4 vị trí có 4! cách

+) 4 người chồng ngồi cạnh nhau: VCCCCVVV hoặc VVVCCCCV có 2 cách

Xếp 2 người chồng không được gạch chân có 2 cách xếp

 có: 4!.2.2 cách

+) 3 người chồng ngồi cạnh nhau: VCCCVVVC hoặc CVVVCCCV có 2 cách

 có: 4!.2 cách
+ 2 người chồng ngồi cạnh nhau: VCCVVVCC hoặc CCVVVCCVcó 2 cách xếp

 có: 4!.2 cách

Vậy trường hợp này có 4!.2.2 + 4!.2 + 4!.2 = 192

Trường hợp 3: 2 người vợ ngồi cạnh nhau

Xếp 4 người vợ vào 4 vị trí có 4! cách

+) 4 người chồng ngồi cạnh nhau VVCCCCVV có 1 cách

Có 2 cách xếp 2 người chồng không có gạch chân

 có: 4!.2

+) 3 người chồng ngồi cạnh nhau VVCCCVVC hoặc CVVCCCVV có 2 cách

 có: 4!.2

+) 2 người chồng ngồi cạnh nhau CVVCCVVC hoặc VVCCVVCC hoặc CCVVCCVV hoặc VCCVVCCV có 4 cách xếp

 có: 4!.4

Vậy trường hợp 3 có 4!.2 + 4!.2 + 4!.4 = 192 cách

Vậy có tất cả số cách là:

432 + 192 + 192 = 816 cách.

Lời giải

Gọi a là chiều dài đúng của cây cầu

Suy ra: a = 152m ± 0,2m

152 – 0,2 ≤ a ≤ 152 + 0,2

151,8 ≤ a ≤ 152,2

Vậy chiều dài đúng của cây cầu là một số nằm trong khoảng 151,8m đến 152,2m

Sai số tương đối = 0,2 : 152 . 100% ≈ 0,13%.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay