Câu hỏi:
11/07/2024 1,415Cho ΔABCΔABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE ⊥ AB, HF ⊥ AC (E ∈ AB; F ∈ AC).
a) Chứng minh tứ giác AEHF là hình chữ nhật.
b) Gọi D là điểm đối xứng của A qua F. Chứng minh DHEF là hình bình hành.
c) Gọi I là giao điểm của EF và AH; M là trung điểm của BC. Qua A kẻ tia Ax vuông góc với đường thẳng MI cắt tia CB tại K. Chứng minh 4 điểm K, E, I, F thẳng hàng.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Chứng minh tứ giác AEHF là hình chữ nhật.
ΔABC vuông tại A ⇒ \(\widehat {BAC}\)= 90°
Vì HE⊥AB, HF⊥AC nên \(\widehat {HEA}\)= 90°, \(\widehat {HFA}\)= 90°
Xét tứ giác AEHF ta có:
\(\widehat {HEA} = \widehat {HFA} = \widehat {EAF}\)= 90°
Suy ra, tứ giác AEHF là hình chữ nhật (dấu hiệu nhận biết).
b) Gọi D là điểm đối xứng của A qua F.
Vì AEHF là hình chữ nhật suy ra EH // AF và EH = AF (tính chất của hình chữ nhật)
Vì D là tâm đối xứng của A qua F nên F là trung điểm của AD. Suy ra, AF = FD.
Do đó, EH // FD và EH = FD.
Suy ra, DHEF là hình bình hành (dấu hiệu nhận biết)
c)
+) Vì I là giao điểm của EF và AH nên ba điểm E, I, F thẳng hàng.
+) Gọi O là giao điểm của EF và AM.
Vì AM là đường trung tuyến của ΔABCΔABC nên AM = MC suy ra ΔAMC cân tại M. Do đó, \(\widehat {MAC} = \widehat {MCA}\)
Vì EHFA là hình chữ nhật, có I là giao điểm hai đường chéo nên ta có \(\widehat {IAF} = \widehat {IFA}\)
Xét ΔAHC ta có: \(\widehat {HAC} + \widehat {HCA} = 90^\circ \) hay \(\widehat {IAF} + \widehat {MCA} = 90^\circ \)
⇒ \(\widehat {IAF} + \widehat {MAC} = 90^\circ \) hay \(\widehat {OAF} + \widehat {OFA} = 90^\circ \)
Xét ΔOAF có: \(\widehat {OAF} + \widehat {OFA} = 90^\circ \)⇒ \(\widehat {AOF} = 90^\circ \)
⇒ EF vuông góc với AM tại O hay IF vuông góc với AM tại O.
+) Xét ΔKAM ta có:
GM ⊥ KA tại G
AH ⊥ KM tại H
Mà I là giao điểm của AH và GM nên I là trực tâm của ΔKAM.
⇒ KI ⊥ AM mà IF ⊥ AM
⇒ K, I, F thẳng hàng.
Ta có:
Ba điểm E, I, F thẳng hàng.
Ba điểm K, I, F thẳng hàng.
⇒ Bốn điểm I, K, E, F thẳng hàng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có 4 cặp vợ chồng được xếp ngồi trên 1 chiếc ghế dài có 8 chỗ. Biết rằng mỗi người vợ chỉ ngồi cạnh chồng mình hoặc ngồi cạnh 1 người phụ nữ khác. Hỏi có bao nhiêu cách sắp xếp chỗ ngồi thỏa mãn?
Câu 2:
Một người bắt đầu đi làm được nhận được số tiền lương là 7 000 000 đồng một tháng. Sau 36 tháng người đó được tăng lương 7%. Hằng tháng người đó tiết kiệm 20% lương để gửi vào ngân hàng với lãi suất 0,3%/tháng theo hình thức lãi kép (nghĩa là lãi của tháng này được nhập vào vốn của tháng kế tiếp). Biết rằng người đó nhận lương vào đầu tháng và số tiền tiết kiệm được chuyển ngay vào ngân hàng. Hỏi sau 36 tháng tổng số tiền người đó tiết kiệm được (cả vốn lẫn lãi) là bao nhiêu? (làm tròn đến hàng nghìn).
Câu 3:
Kết quả đo chiều dài của một cây cầu được ghi là 152m ± 0,2m, điều đó có nghĩa là gì? Tìm sai số tương đối.
Câu 4:
Cho hai tập hợp A = [m – 4; 1], B = (–3; m]. Tính tổng tất cả các giá trị nguyên của m để A ∪ B = B.
Câu 5:
Một chiếc đồng hồ đánh chuông, số tiếng chuông được đánh đúng bằng số mà kim giờ chỉ tại thời điểm đánh chuông. Hỏi một ngày đêm đồng hồ đó đánh bao nhiêu tiếng chuông?
Câu 6:
Bảng giá cước của hãng taxi được cho như sau: Giá mở cửa 11 000 đồng. Giá tiếp theo từ 0,8km đến 30km là 15 800 đồng/1km. Từ km thứ 31 trở đi giá 12 500 đồng/1km. Quí thời gian chờ từ 5 phút đến 1 giờ là 3000 đồng. Giá trên đã bao gồm thuế VAT.
a) Gọi y (đồng) là số tiền khách phải trả sau khi đi x (km). Lập hàm số của y theo x. (Giả sử không tính thời gian chờ và phí cầu đường, bến bãi).
b) Một hàn khách thuê taxi quãng đường 40km phải trả số tiền là bao nhiêu?
về câu hỏi!