Câu hỏi:

11/07/2024 3,670

Cho ΔABCΔABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE AB, HF AC (E AB; F AC).

a) Chứng minh tứ giác AEHF là hình chữ nhật.

b) Gọi D là điểm đối xứng của A qua F. Chứng minh DHEF là hình bình hành.

c) Gọi I là giao điểm của EF và AH; M là trung điểm của BC. Qua A kẻ tia Ax vuông góc với đường thẳng MI cắt tia CB tại K. Chứng minh 4 điểm K, E, I, F thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABCΔABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE (ảnh 1)

a) Chứng minh tứ giác AEHF là hình chữ nhật.

ΔABC vuông tại A  \(\widehat {BAC}\)= 90°

Vì HEAB, HFAC nên \(\widehat {HEA}\)= 90°, \(\widehat {HFA}\)= 90°

Xét tứ giác AEHF ta có:

\(\widehat {HEA} = \widehat {HFA} = \widehat {EAF}\)= 90°

Suy ra, tứ giác AEHF là hình chữ nhật (dấu hiệu nhận biết).

b) Gọi D là điểm đối xứng của A qua F.

Vì AEHF là hình chữ nhật suy ra EH // AF và EH = AF (tính chất của hình chữ nhật)

Vì D là tâm đối xứng của A qua F nên F là trung điểm của AD. Suy ra, AF = FD.

Do đó, EH // FD và EH = FD.

Suy ra, DHEF là hình bình hành (dấu hiệu nhận biết)

c)

+) Vì I là giao điểm của EF và AH nên ba điểm E, I, F thẳng hàng.

+) Gọi O là giao điểm của EF và AM.

Vì AM là đường trung tuyến của ΔABCΔABC nên AM = MC suy ra ΔAMC cân tại M. Do đó, \(\widehat {MAC} = \widehat {MCA}\)

Vì EHFA là hình chữ nhật, có I là giao điểm hai đường chéo nên ta có \(\widehat {IAF} = \widehat {IFA}\)

Xét ΔAHC ta có: \(\widehat {HAC} + \widehat {HCA} = 90^\circ \) hay \(\widehat {IAF} + \widehat {MCA} = 90^\circ \)

\(\widehat {IAF} + \widehat {MAC} = 90^\circ \) hay \(\widehat {OAF} + \widehat {OFA} = 90^\circ \)

Xét ΔOAF có: \(\widehat {OAF} + \widehat {OFA} = 90^\circ \) \(\widehat {AOF} = 90^\circ \)

EF vuông góc với AM tại O hay IF vuông góc với AM tại O.

+) Xét ΔKAM ta có:

GM KA tại G

AH KM tại H

Mà I là giao điểm của AH và GM nên I là trực tâm của ΔKAM.

KI AM mà IF AM

  K, I, F thẳng hàng.

Ta có:

Ba điểm E, I, F thẳng hàng.

Ba điểm K, I, F thẳng hàng.

Bốn điểm I, K, E, F thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trường hợp 1: Xếp 4 người vợ ngồi cạnh nhau có 4! cách

+) Xếp 4 người chồng ngồi cạnh nhau VVVVCCCC hoặc CCCCVVVV có 2 cách

Vợ chỉ được ngồi cạnh chồng của mình nên, xếp 3 người chồng (không được gạch chân) Có 3! cách xếp

 có 4!.2.3! cách

+) Xếp 3 người chồng ngồi cạnh nhau CVVVVCCC hoặc CCCVVVVC có 2 cách xếp

Xếp 2 người chồng (không được gạch chân) có 2 cách xếp

 có 4!.2.2 cách

+) Xếp 2 người chồng ngồi cạnh nhau CCVVVVCC có 1 cách

Xếp 2 người chồng (không được gạch chân) có 2 cách xếp

 có 4!.2

Vậy trường hợp 1 có 4!.2.3! + 4!.2.2 + 4!.2 = 432cách.

Trường hợp 2: Xếp 3 người vợ ngồi cạnh nhau

Xếp 4 người vợ vào 4 vị trí có 4! cách

+) 4 người chồng ngồi cạnh nhau: VCCCCVVV hoặc VVVCCCCV có 2 cách

Xếp 2 người chồng không được gạch chân có 2 cách xếp

 có: 4!.2.2 cách

+) 3 người chồng ngồi cạnh nhau: VCCCVVVC hoặc CVVVCCCV có 2 cách

 có: 4!.2 cách
+ 2 người chồng ngồi cạnh nhau: VCCVVVCC hoặc CCVVVCCVcó 2 cách xếp

 có: 4!.2 cách

Vậy trường hợp này có 4!.2.2 + 4!.2 + 4!.2 = 192

Trường hợp 3: 2 người vợ ngồi cạnh nhau

Xếp 4 người vợ vào 4 vị trí có 4! cách

+) 4 người chồng ngồi cạnh nhau VVCCCCVV có 1 cách

Có 2 cách xếp 2 người chồng không có gạch chân

 có: 4!.2

+) 3 người chồng ngồi cạnh nhau VVCCCVVC hoặc CVVCCCVV có 2 cách

 có: 4!.2

+) 2 người chồng ngồi cạnh nhau CVVCCVVC hoặc VVCCVVCC hoặc CCVVCCVV hoặc VCCVVCCV có 4 cách xếp

 có: 4!.4

Vậy trường hợp 3 có 4!.2 + 4!.2 + 4!.4 = 192 cách

Vậy có tất cả số cách là:

432 + 192 + 192 = 816 cách.

Lời giải

Gọi a là chiều dài đúng của cây cầu

Suy ra: a = 152m ± 0,2m

152 – 0,2 ≤ a ≤ 152 + 0,2

151,8 ≤ a ≤ 152,2

Vậy chiều dài đúng của cây cầu là một số nằm trong khoảng 151,8m đến 152,2m

Sai số tương đối = 0,2 : 152 . 100% ≈ 0,13%.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP