Câu hỏi:

12/07/2024 4,224

Gọi M là tập hợp các số tự nhiên có ba chữ số lập được từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Lấy ngẫu nhiên đồng thời 2 số từ tập M. Xác suất để cả 2 số lấy được đều có chữ số hàng chục nhỏ hơn các chữ số hàng trăm và hàng đơn vị là?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số lượng số tự nhiên có 3 chữ số lập từ 8 chữ số trên là 7 . 8 . 8 = 448 số

Tập M có 448 số

Gọi số thỏa mãn đề là \(\overline {abc} \)

Ta có: b < a, b < c

+) b = 0  Có 7 cách chọn chữ số a, c

 Có tất cả: 7 . 7 = 49 số cần tìm 

+) b = 1  Có 6 cách chọn chữ số a, c

+) b = 2  Có 5 cách chọn chữ số a, c

+) b = 3  Có 4 cách chọn chữ số a, c

+) b = 4  Có 3 cách chọn chữ số a, c

+) b = 5 Có 2 cách chọn chữ số a, c

+) b = 6  Có 1 cách chọn chữ số a, c

+) b = 7  Có 0 cách chọn chữ số a, c

Số cách chọn a, b, c thỏa mãn đề là:

7 . 7 + 6 . 6 + 5 . 5 + 4 . 4 + 3 . 3 + 2 . 2 + 1 . 1 = 140

Xác suất để cả 2 số lấy được đều có chữ số hàng chục nhỏ hơn các chữ số hàng trăm và hàng đơn vị là: \(\frac{{140.139}}{{448.447}} = \frac{{695}}{{7152}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trường hợp 1: Xếp 4 người vợ ngồi cạnh nhau có 4! cách

+) Xếp 4 người chồng ngồi cạnh nhau VVVVCCCC hoặc CCCCVVVV có 2 cách

Vợ chỉ được ngồi cạnh chồng của mình nên, xếp 3 người chồng (không được gạch chân) Có 3! cách xếp

 có 4!.2.3! cách

+) Xếp 3 người chồng ngồi cạnh nhau CVVVVCCC hoặc CCCVVVVC có 2 cách xếp

Xếp 2 người chồng (không được gạch chân) có 2 cách xếp

 có 4!.2.2 cách

+) Xếp 2 người chồng ngồi cạnh nhau CCVVVVCC có 1 cách

Xếp 2 người chồng (không được gạch chân) có 2 cách xếp

 có 4!.2

Vậy trường hợp 1 có 4!.2.3! + 4!.2.2 + 4!.2 = 432cách.

Trường hợp 2: Xếp 3 người vợ ngồi cạnh nhau

Xếp 4 người vợ vào 4 vị trí có 4! cách

+) 4 người chồng ngồi cạnh nhau: VCCCCVVV hoặc VVVCCCCV có 2 cách

Xếp 2 người chồng không được gạch chân có 2 cách xếp

 có: 4!.2.2 cách

+) 3 người chồng ngồi cạnh nhau: VCCCVVVC hoặc CVVVCCCV có 2 cách

 có: 4!.2 cách
+ 2 người chồng ngồi cạnh nhau: VCCVVVCC hoặc CCVVVCCVcó 2 cách xếp

 có: 4!.2 cách

Vậy trường hợp này có 4!.2.2 + 4!.2 + 4!.2 = 192

Trường hợp 3: 2 người vợ ngồi cạnh nhau

Xếp 4 người vợ vào 4 vị trí có 4! cách

+) 4 người chồng ngồi cạnh nhau VVCCCCVV có 1 cách

Có 2 cách xếp 2 người chồng không có gạch chân

 có: 4!.2

+) 3 người chồng ngồi cạnh nhau VVCCCVVC hoặc CVVCCCVV có 2 cách

 có: 4!.2

+) 2 người chồng ngồi cạnh nhau CVVCCVVC hoặc VVCCVVCC hoặc CCVVCCVV hoặc VCCVVCCV có 4 cách xếp

 có: 4!.4

Vậy trường hợp 3 có 4!.2 + 4!.2 + 4!.4 = 192 cách

Vậy có tất cả số cách là:

432 + 192 + 192 = 816 cách.

Lời giải

Gọi a là chiều dài đúng của cây cầu

Suy ra: a = 152m ± 0,2m

152 – 0,2 ≤ a ≤ 152 + 0,2

151,8 ≤ a ≤ 152,2

Vậy chiều dài đúng của cây cầu là một số nằm trong khoảng 151,8m đến 152,2m

Sai số tương đối = 0,2 : 152 . 100% ≈ 0,13%.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP