Câu hỏi:
12/07/2024 41,087
Một ô tô dự định đi từ A đến B trong một thời gian nhất định. Nếu xe chạy với vận tốc 35km/h thì đến nơi chậm mất 2 giờ. Nếu xe chạy với vận tốc 50km/h thì đến nơi sớm hơn 1 giờ. Tìm quãng đường AB và thời gian dự định đi lúc đầu.
Một ô tô dự định đi từ A đến B trong một thời gian nhất định. Nếu xe chạy với vận tốc 35km/h thì đến nơi chậm mất 2 giờ. Nếu xe chạy với vận tốc 50km/h thì đến nơi sớm hơn 1 giờ. Tìm quãng đường AB và thời gian dự định đi lúc đầu.
Quảng cáo
Trả lời:
Gọi x (km) là độ dài quãng đường AB,
y (giờ) là thời gian dự định đi đến B lúc đầu. (x > 0, y > 1)
Thời gian đi từ A đến B với vận tốc 35km là:
\(\frac{x}{{35}}\) = y + 2 ⇒ x = 35.(y + 2) (1)
Thời gian đi từ A và B với vận tốc 50km là: \(\frac{x}{{50}}\) = y − 1 ⇒ x = 50.(y − 1) (2)
Từ (1) và (2) ta có:
35.(y + 2) = 50.(y − 1)
⇒ 35y + 70 = 50y – 50
⇒ y = 8
⇒ x = 35.(y + 2) = 35.10 = 350 (km)
Vậy quãng đường AB là 350km và thời gian dự định đi lúc đầu là 8 giờ.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi A là biến cố: “bạn A thi đỗ”, B là biến cố: “bạn B thi đỗ”, C là biến cố: “chỉ có một bạn thi đỗ”.
* Trường hợp 1: A thi đỗ, B thi không đỗ.
\(P\left( {A.\overline B } \right) = P\left( A \right).P\left( {\overline B } \right)\)= 0,6 . 0,4 = 0,24.
* Trường hợp 2: A thi không đỗ, B thi đỗ.
\(P\left( {\overline A .B} \right) = P\left( {\overline A } \right).P\left( B \right)\) = 0,4 . 0,6 = 0,24.
Theo quy tắc cộng xác suất, ta có
P(C) = \(P\left( {A.\overline B } \right) + P\left( {\overline A .B} \right)\)= 0,24 + 0,24 = 0,48.
Lời giải

a) Ta có: BE, CF là đường cao của ΔABC nên BE ⊥ AC, CF ⊥ AB
⇒ \(\widehat {AEH} = \widehat {AFH} = 90^\circ \)
Tứ giác AEHF có: \(\widehat {AEH} + \widehat {AFH} = 90^\circ + 90^\circ = 180^\circ \) mà chúng ở vị trí đối đỉnh nên AEHF là tứ giác nội tiếp đường tròn đường kính (AH)
Ta có: \(\widehat {AEB} = \widehat {ADB} = 90^\circ \)
⇒ E, D cùng nhìn cạnh AB dưới góc 90 độ nên AEDB nội tiếp đường tròn đường kính (AB)
b) Xét ΔABD và ΔAKC có:
\(\widehat {ABD} = \widehat {AKC}\) (góc nội tiếp cùng chắn cung AC)
\(\widehat {ADB} = \widehat {ACK} = 90^\circ \)
⇒ ΔABD ∽ ΔAKC (g.g)
⇒ \(\frac{{AB}}{{AK}} = \frac{{AD}}{{AC}}\)
⇒ AB.AC = AK.AD = AD.2R
c) Dựng Cx ⊥ OC hay Cx là tiếp tuyến của (O)
⇒ \(\widehat {BCx} = \widehat {BAC}\) (góc tạo bởi tiếp tuyến và dây cung, góc nội tiếp cùng chắn cung BC)
\(\widehat {EDC} = \widehat {BAC}\)(do AEDB nội tiếp)
⇒ \[\widehat {EDC} = \widehat {BCx}\]mà chúng ở vị trí so le trong
⇒ DE // Cx mà Cx ⊥ OC
⇒ DE ⊥ OC.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.