Câu hỏi:
12/07/2024 37,041Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC.
a) Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn.
b) Vẽ đường kính AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau. Suy ra AB.AC = 2R.AD.
c) Chứng minh OC vuông góc với DE.
Quảng cáo
Trả lời:
a) Ta có: BE, CF là đường cao của ΔABC nên BE ⊥ AC, CF ⊥ AB
⇒ \(\widehat {AEH} = \widehat {AFH} = 90^\circ \)
Tứ giác AEHF có: \(\widehat {AEH} + \widehat {AFH} = 90^\circ + 90^\circ = 180^\circ \) mà chúng ở vị trí đối đỉnh nên AEHF là tứ giác nội tiếp đường tròn đường kính (AH)
Ta có: \(\widehat {AEB} = \widehat {ADB} = 90^\circ \)
⇒ E, D cùng nhìn cạnh AB dưới góc 90 độ nên AEDB nội tiếp đường tròn đường kính (AB)
b) Xét ΔABD và ΔAKC có:
\(\widehat {ABD} = \widehat {AKC}\) (góc nội tiếp cùng chắn cung AC)
\(\widehat {ADB} = \widehat {ACK} = 90^\circ \)
⇒ ΔABD ∽ ΔAKC (g.g)
⇒ \(\frac{{AB}}{{AK}} = \frac{{AD}}{{AC}}\)
⇒ AB.AC = AK.AD = AD.2R
c) Dựng Cx ⊥ OC hay Cx là tiếp tuyến của (O)
⇒ \(\widehat {BCx} = \widehat {BAC}\) (góc tạo bởi tiếp tuyến và dây cung, góc nội tiếp cùng chắn cung BC)
\(\widehat {EDC} = \widehat {BAC}\)(do AEDB nội tiếp)
⇒ \[\widehat {EDC} = \widehat {BCx}\]mà chúng ở vị trí so le trong
⇒ DE // Cx mà Cx ⊥ OC
⇒ DE ⊥ OC.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi A là biến cố: “bạn A thi đỗ”, B là biến cố: “bạn B thi đỗ”, C là biến cố: “chỉ có một bạn thi đỗ”.
* Trường hợp 1: A thi đỗ, B thi không đỗ.
\(P\left( {A.\overline B } \right) = P\left( A \right).P\left( {\overline B } \right)\)= 0,6 . 0,4 = 0,24.
* Trường hợp 2: A thi không đỗ, B thi đỗ.
\(P\left( {\overline A .B} \right) = P\left( {\overline A } \right).P\left( B \right)\) = 0,4 . 0,6 = 0,24.
Theo quy tắc cộng xác suất, ta có
P(C) = \(P\left( {A.\overline B } \right) + P\left( {\overline A .B} \right)\)= 0,24 + 0,24 = 0,48.
Lời giải
Gọi x (km) là độ dài quãng đường AB,
y (giờ) là thời gian dự định đi đến B lúc đầu. (x > 0, y > 1)
Thời gian đi từ A đến B với vận tốc 35km là:
\(\frac{x}{{35}}\) = y + 2 ⇒ x = 35.(y + 2) (1)
Thời gian đi từ A và B với vận tốc 50km là: \(\frac{x}{{50}}\) = y − 1 ⇒ x = 50.(y − 1) (2)
Từ (1) và (2) ta có:
35.(y + 2) = 50.(y − 1)
⇒ 35y + 70 = 50y – 50
⇒ y = 8
⇒ x = 35.(y + 2) = 35.10 = 350 (km)
Vậy quãng đường AB là 350km và thời gian dự định đi lúc đầu là 8 giờ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận