Câu hỏi:

13/07/2024 6,401

Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF.

a) Chứng minh tứ giác BFCE là hình bình hành.

b) Chứng minh tứ giác BFEA là hình chữ nhật.

c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi.

d) Vẽ AH BC tại H. Gọi M là trung điểm của HC. Chứng minh FM AM.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

a) Tứ giác BFCE có 2 đường chéo BC và FE cắt nhau tại trung điểm D của mỗi đường nên BFCE là hình bình hành.

b) BFCE là hình bình hành và E là trung điểm AC nên: BF=EC=AEBFECAE

Suy ra BFEA là hình bình hành.

Mà tam giác ABC vuông ở A nên BFEA là hình chữ nhật

c) DE là đường trung bình trong tam giác ABC nên  DE//ABABAC Suy ra: DE AC.

K đối xứng với F qua E hay E là trung điểm của FK

Tứ giác FAKC có 2 đường chéo FK và AC vuông góc và cắt nhau tại trung điểm E của mỗi đường nên AFCK là hình thoi.

d) Gọi I là giao điểm của hai đường chéo BE và AF trong hình chữ nhật BFEA

Suy ra I là trung điểm BE và AF và BE = FA

ME là đường trung bình của tam giác AHC nên ME // AH ME AH

Tam giác BME vuông tại M có trung tuyến MI nên MI = 12 BE = 12  FA

Tam giác FAM có trung tuyến MI thỏa mãn MI = 12  FA nên tam giác FAM vuông tại M

Hay FM AM.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

sin2α = 132=19

Ta có: sin2α + cos2α = 1

Suy ra: cos2α = 1 – sin2α = 119=89

cos α = ±89=±223

Vì 90° < α < 180° nên cos α =  223

Lời giải

Media VietJack

a) Vì AB, AC là tiếp tuyến của (O)

AB = AC mà OB = OC AO là đường trung trực của BC

OA BC

b) Xét ΔACE và ΔADC có: 

ACE^=ADC^ (góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung EC)

EAC^=DAC^

ΔACE ΔADC (g.g)

⇒ ACAD=AEAC

AE.AD = AC2 = AH.AO (ΔACO vuông tại C có CH là đường cao)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP