Câu hỏi:
15/08/2023 222
Cho (O; R) và (O; R') tiếp xúc ngoài tại A. Kẻ dây cung AM của (O) và dây cung AN của (O') sao cho AM vuông góc với AN. Chứng minh:
a) OM song song O'N;
b) Xác định vị trí của AM và AN để diện tích tứ giác OMNO' lớn nhất.
Cho (O; R) và (O; R') tiếp xúc ngoài tại A. Kẻ dây cung AM của (O) và dây cung AN của (O') sao cho AM vuông góc với AN. Chứng minh:
a) OM song song O'N;
b) Xác định vị trí của AM và AN để diện tích tứ giác OMNO' lớn nhất.
Quảng cáo
Trả lời:
Xét ∆MAN vuông tại A có: = 90° (1)
Và = 90° = 180° − = 180° − 90° = 90° (2)
Lại có: ∆OMA cân tại O (OA = OM = R) ⇒ (3)
∆O’NA cân tại O (O’A = O’N = R’) ⇒ (4)
Từ (1), (2), (3) và (4) suy ra:
=
=
=
= 90° + 90° = 180°
Tứ giác OMNO’ có nên MN // O’N.
b) Từ O’ kẻ O’H ⊥ OM. Khi đó:
Dấu bằng xảy ra khi và chỉ khi O’H = O’O hay H ≡ O ⇒ O’O ⊥ MO hoặc O’O ⊥ O’N
Vậy tứ giác MNO’O có diện tích lớn nhất là khi O’O ⊥ MO hoặc O’O ⊥ O’N.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
sin2α =
Ta có: sin2α + cos2α = 1
Suy ra: cos2α = 1 – sin2α =
cos α =
Vì 90° < α < 180° nên cos α =
Lời giải
a) Vì AB, AC là tiếp tuyến của (O)
⇒ AB = AC mà OB = OC⇒ AO là đường trung trực của BC
⇒ OA ⊥ BC
b) Xét ΔACE và ΔADC có:
(góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung EC)
⇒ ΔACE ∼ ΔADC (g.g)
⇒
⇒ AE.AD = AC2 = AH.AO (ΔACO vuông tại C có CH là đường cao)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.