Câu hỏi:
13/07/2024 3,348
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 9cm ; AC=12cm
a) Tính số đo góc B (làm tròn đến độ) và độ dài BH
b) Gọi E, F là hình chiếu của H trên AB, AC. Chứng minh AE.AB = AF.AC.
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 9cm ; AC=12cm
a) Tính số đo góc B (làm tròn đến độ) và độ dài BH
b) Gọi E, F là hình chiếu của H trên AB, AC. Chứng minh AE.AB = AF.AC.
Quảng cáo
Trả lời:
a) Theo định lí Pytago, ΔABC vuông tại A có:
BC2 = AB2 + AC2 = 92 + 122 = 225
⇔ BC = 15(cm)
Từ đó, ta có:
sin B = = 0,8
⇔
Theo hệ thức lượng: AB2 = BH.BC
⇔ BH = = = 5,4(cm)
b) AH ⊥ BC tại H ⇔ ΔABH, ΔACH vuông tại H
E là hình chiếu của H trên AB
⇔ HE ⊥ AB
⇔ HE là đường cao ΔABH
Suy ra: AH2 = AE.AB (1)
F là hình chiếu của H trên AC
⇔ HF ⊥ AC
⇔ HF là đường cao ΔACH
Suy ra: AH2 = AF.AC (2)
Từ (1) và (2), ta có: AE.AB = AF.AC
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
sin2α =
Ta có: sin2α + cos2α = 1
Suy ra: cos2α = 1 – sin2α =
cos α =
Vì 90° < α < 180° nên cos α =
Lời giải
a) Vì AB, AC là tiếp tuyến của (O)
⇒ AB = AC mà OB = OC⇒ AO là đường trung trực của BC
⇒ OA ⊥ BC
b) Xét ΔACE và ΔADC có:
(góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung EC)
⇒ ΔACE ∼ ΔADC (g.g)
⇒
⇒ AE.AD = AC2 = AH.AO (ΔACO vuông tại C có CH là đường cao)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.