Câu hỏi:

13/07/2024 4,000

Từ một điểm A nằm ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M bất kỳ, vẽ MI vuông góc với AB, MK vuông góc với AC (I thuộc AB, K thuộc AC).

a) Chứng minh AIMK, ABOC là các tứ giác nội tiếp;

b) Vẽ MP vuông góc với BC (P thuộc BC). Chứng minh ;

c) Chứng minh MI.MK = MP2;

d) Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

a) Xét tứ giác AIMK  có:

 AIM^= 90° (MI AB); AKM^  = 90° (MK AC)

⇒ AIM^+AKM^  = 90° + 90° = 180°

Mà 2 góc ở vị trí đối nhau

Tứ giác AIMK nội tiếp

Xét (O) có AB, AC là hai tiếp tuyến cắt nhau tại A

OB AB; OC AC ABO^=ACO^ = 90°

Xét tứ giác ABOC có: 

 ABO^+ACO^= 90° + 90° = 180°

Mà 2 góc ở vị trí đối nhau

 Tứ giác ABOC nội tiếp

b) Xét tứ giác MPCK có:

 MPC^ = 90° (MP BC); MKC^= 90° (MK AC)

MPC^+MKC^ = 90° + 90° = 180°

Mà 2 góc ở vị trí đối nhau

Tứ giác MPCK nội tiếp

⇒ MPK^=MCK^ (cùng nhìn cạnh MK)

Xét (O) có: MCK^   là góc tạo bởi tiếp tuyến và dây cung MC

 MBC^ là góc nội tiếp chắn cung MC

⇒ MCK^=MBC^

Mà MPK^=MCK^ ⇒ MPK^=MBC^

c) Xét tứ giác MIBP có:

MIB^= 90° (MI AB) ; MPB^  = 90°(MPBC)

⇒ MIB^+MPB^ = 90° + 90° = 180°

mà 2 góc ở vị trí đối nhau

Ttứ giác MIBP nội tiếp

⇒ IBM^=IPM^ (cùng nhìn cạnh MI)

MIP^=MBP^ (cùng nhìn cạnh MP) hay MBC^=MIP^

mà MPK^=MBC^  ⇒ MPK^=MIP^

Xét (O) có: IBM^  là góc tạo bởi tiếp tuyến và dây cung BM

 MCB^ là góc nội tiếp chắn cung BM

⇒ IBM^=MCB^

mà  IBM^=IPM^ MCB^=IPM^ hay  MCP^=IPM^

Tứ giác MPCK nội tiếp ⇒ MCP^=MKP^

⇒ IPM^=MKP^

Xét ΔMIP và ΔMPK có:

IPM^=MKP^

MIP^=MPK^

 ΔMIP ~ ΔMPK (g.g)

MI.MP = MP.MK MI.MK = MP2

d) Vì MI.MK = MP2 nên MI.MK.MP = MP3

Tích MI.MK.MP đạt giá trị lớn nhất khi MP lớn nhất

Gọi H là hình chiếu của O trên BC

OH cố định (Vì O cố định; BC cố định)

Gọi D là giao điểm của MO và BC

Ta có: MP ≤ MD; OH ≤ OD

MP + OH ≤ MD + OD = MO MP + OH ≤ R

MP ≤ R−OH MP3 ≤ (R − OH)3

Dấu "=" xảy ra khi MP = R − OH

O, H, Mthẳng hàng 

M nằm chính giữa  cung nhỏ BC

Vậy tích MI.MK.MP đạt giá trị lớn nhất khi M nằm chính giữa cung nhỏ BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho sin α = 13,  với 90° < α < 180°. Tính cos α.

Xem đáp án » 13/07/2024 73,915

Câu 2:

Cho tam giác ABC thỏa mãn sinA=sinB+sinCcosB+cosC . Chứng minh tam giác ABC là tam giác vuông.

Xem đáp án » 13/07/2024 24,176

Câu 3:

Một xe đi nửa đoạn đường đầu tiên với tốc độ trung bình v1 = 12km/h và nửa đoạn đường sau với tốc độ trung bình v2 = 20km/h. Tính tốc độ trung bình trên cả đoạn đường. 

Xem đáp án » 13/07/2024 24,017

Câu 4:

Tính diện tích tam giác ABC có AB = 3; BC = 5; CA = 6.

Xem đáp án » 13/07/2024 20,818

Câu 5:

Có 3 học sinh nữ và 2 học sinh nam. Ta muốn sắp xếp vào 1 bàn dài có 5 ghế ngồi. Hỏi có bao nhiêu cách xếp cho 3 học sinh nữ ngồi liền nhau.

Xem đáp án » 13/07/2024 16,524

Câu 6:

Có bao nhiêu số tròn nghìn có 5 chữ số?

Xem đáp án » 13/07/2024 13,905

Câu 7:

Cho tam giác ABC (AB < AC), AD là phân giác trong của góc A. Qua trung điểm E của cạnh BC, vẽ đường thẳng song song với AD, cắt cạnh AC tại F, cắt đường thẳng AB tại G. Chứng minh CF = BG.

Xem đáp án » 13/07/2024 12,407

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store