Câu hỏi:

13/07/2024 6,442

Từ một điểm A nằm ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M bất kỳ, vẽ MI vuông góc với AB, MK vuông góc với AC (I thuộc AB, K thuộc AC).

a) Chứng minh AIMK, ABOC là các tứ giác nội tiếp;

b) Vẽ MP vuông góc với BC (P thuộc BC). Chứng minh ;

c) Chứng minh MI.MK = MP2;

d) Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

a) Xét tứ giác AIMK  có:

 AIM^= 90° (MI AB); AKM^  = 90° (MK AC)

⇒ AIM^+AKM^  = 90° + 90° = 180°

Mà 2 góc ở vị trí đối nhau

Tứ giác AIMK nội tiếp

Xét (O) có AB, AC là hai tiếp tuyến cắt nhau tại A

OB AB; OC AC ABO^=ACO^ = 90°

Xét tứ giác ABOC có: 

 ABO^+ACO^= 90° + 90° = 180°

Mà 2 góc ở vị trí đối nhau

 Tứ giác ABOC nội tiếp

b) Xét tứ giác MPCK có:

 MPC^ = 90° (MP BC); MKC^= 90° (MK AC)

MPC^+MKC^ = 90° + 90° = 180°

Mà 2 góc ở vị trí đối nhau

Tứ giác MPCK nội tiếp

⇒ MPK^=MCK^ (cùng nhìn cạnh MK)

Xét (O) có: MCK^   là góc tạo bởi tiếp tuyến và dây cung MC

 MBC^ là góc nội tiếp chắn cung MC

⇒ MCK^=MBC^

Mà MPK^=MCK^ ⇒ MPK^=MBC^

c) Xét tứ giác MIBP có:

MIB^= 90° (MI AB) ; MPB^  = 90°(MPBC)

⇒ MIB^+MPB^ = 90° + 90° = 180°

mà 2 góc ở vị trí đối nhau

Ttứ giác MIBP nội tiếp

⇒ IBM^=IPM^ (cùng nhìn cạnh MI)

MIP^=MBP^ (cùng nhìn cạnh MP) hay MBC^=MIP^

mà MPK^=MBC^  ⇒ MPK^=MIP^

Xét (O) có: IBM^  là góc tạo bởi tiếp tuyến và dây cung BM

 MCB^ là góc nội tiếp chắn cung BM

⇒ IBM^=MCB^

mà  IBM^=IPM^ MCB^=IPM^ hay  MCP^=IPM^

Tứ giác MPCK nội tiếp ⇒ MCP^=MKP^

⇒ IPM^=MKP^

Xét ΔMIP và ΔMPK có:

IPM^=MKP^

MIP^=MPK^

 ΔMIP ~ ΔMPK (g.g)

MI.MP = MP.MK MI.MK = MP2

d) Vì MI.MK = MP2 nên MI.MK.MP = MP3

Tích MI.MK.MP đạt giá trị lớn nhất khi MP lớn nhất

Gọi H là hình chiếu của O trên BC

OH cố định (Vì O cố định; BC cố định)

Gọi D là giao điểm của MO và BC

Ta có: MP ≤ MD; OH ≤ OD

MP + OH ≤ MD + OD = MO MP + OH ≤ R

MP ≤ R−OH MP3 ≤ (R − OH)3

Dấu "=" xảy ra khi MP = R − OH

O, H, Mthẳng hàng 

M nằm chính giữa  cung nhỏ BC

Vậy tích MI.MK.MP đạt giá trị lớn nhất khi M nằm chính giữa cung nhỏ BC.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho sin α = 13,  với 90° < α < 180°. Tính cos α.

Xem đáp án » 13/07/2024 78,408

Câu 2:

Có 3 học sinh nữ và 2 học sinh nam. Ta muốn sắp xếp vào 1 bàn dài có 5 ghế ngồi. Hỏi có bao nhiêu cách xếp cho 3 học sinh nữ ngồi liền nhau.

Xem đáp án » 13/07/2024 29,306

Câu 3:

Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.

a) Chứng minh OA vuông góc với BC tại H.

b) Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn (O) tại E (khác D), Chứng minh: AE.AD = AH.AO.

Xem đáp án » 13/07/2024 28,488

Câu 4:

Cho tam giác ABC thỏa mãn sinA=sinB+sinCcosB+cosC . Chứng minh tam giác ABC là tam giác vuông.

Xem đáp án » 13/07/2024 26,332

Câu 5:

Một xe đi nửa đoạn đường đầu tiên với tốc độ trung bình v1 = 12km/h và nửa đoạn đường sau với tốc độ trung bình v2 = 20km/h. Tính tốc độ trung bình trên cả đoạn đường. 

Xem đáp án » 13/07/2024 26,120

Câu 6:

Tính diện tích tam giác ABC có AB = 3; BC = 5; CA = 6.

Xem đáp án » 13/07/2024 22,601

Câu 7:

Cho tam giác ABC vuông tại A, đường cao AH, biết AB = 9cm, AC = 12cm. Tính BC, AH, HB, HC, diện tích tam giác ABC.

Xem đáp án » 13/07/2024 19,866
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua