Câu hỏi:
13/07/2024 7,105
Từ một điểm A nằm ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M bất kỳ, vẽ MI vuông góc với AB, MK vuông góc với AC (I thuộc AB, K thuộc AC).
a) Chứng minh AIMK, ABOC là các tứ giác nội tiếp;
b) Vẽ MP vuông góc với BC (P thuộc BC). Chứng minh ;
c) Chứng minh MI.MK = MP2;
d) Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất.
Từ một điểm A nằm ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M bất kỳ, vẽ MI vuông góc với AB, MK vuông góc với AC (I thuộc AB, K thuộc AC).
a) Chứng minh AIMK, ABOC là các tứ giác nội tiếp;
b) Vẽ MP vuông góc với BC (P thuộc BC). Chứng minh ;
c) Chứng minh MI.MK = MP2;
d) Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất.
Quảng cáo
Trả lời:
a) Xét tứ giác AIMK có:
= 90° (MI ⊥ AB); = 90° (MK ⊥ AC)
⇒ = 90° + 90° = 180°
Mà 2 góc ở vị trí đối nhau
⇒ Tứ giác AIMK nội tiếp
Xét (O) có AB, AC là hai tiếp tuyến cắt nhau tại A
⇒ OB ⊥ AB; OC ⊥ AC ⇒ = 90°
Xét tứ giác ABOC có:
= 90° + 90° = 180°
Mà 2 góc ở vị trí đối nhau
⇒ Tứ giác ABOC nội tiếp
b) Xét tứ giác MPCK có:
= 90° (MP ⊥ BC); = 90° (MK ⊥ AC)
⇒ = 90° + 90° = 180°
Mà 2 góc ở vị trí đối nhau
⇒ Tứ giác MPCK nội tiếp
⇒ (cùng nhìn cạnh MK)
Xét (O) có: là góc tạo bởi tiếp tuyến và dây cung MC
là góc nội tiếp chắn cung MC
⇒
Mà ⇒
c) Xét tứ giác MIBP có:
= 90° (MI ⊥ AB) ; = 90°(MP⊥BC)
⇒ = 90° + 90° = 180°
mà 2 góc ở vị trí đối nhau
⇒Ttứ giác MIBP nội tiếp
⇒ (cùng nhìn cạnh MI)
(cùng nhìn cạnh MP) hay
mà ⇒
Xét (O) có: là góc tạo bởi tiếp tuyến và dây cung BM
là góc nội tiếp chắn cung BM
⇒
mà ⇒ hay
Tứ giác MPCK nội tiếp ⇒
⇒
Xét ΔMIP và ΔMPK có:
⇒ ΔMIP ~ ΔMPK (g.g)
⇒ MI.MP = MP.MK ⇒ MI.MK = MP2
d) Vì MI.MK = MP2 nên MI.MK.MP = MP3
Tích MI.MK.MP đạt giá trị lớn nhất khi MP lớn nhất
Gọi H là hình chiếu của O trên BC
⇒ OH cố định (Vì O cố định; BC cố định)
Gọi D là giao điểm của MO và BC
Ta có: MP ≤ MD; OH ≤ OD
MP + OH ≤ MD + OD = MO ⇒ MP + OH ≤ R
⇒MP ≤ R−OH ⇒ MP3 ≤ (R − OH)3
Dấu "=" xảy ra khi MP = R − OH
⇒ O, H, Mthẳng hàng
⇒ M nằm chính giữa cung nhỏ BC
Vậy tích MI.MK.MP đạt giá trị lớn nhất khi M nằm chính giữa cung nhỏ BC.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
sin2α =
Ta có: sin2α + cos2α = 1
Suy ra: cos2α = 1 – sin2α =
cos α =
Vì 90° < α < 180° nên cos α =
Lời giải
a) Vì AB, AC là tiếp tuyến của (O)
⇒ AB = AC mà OB = OC⇒ AO là đường trung trực của BC
⇒ OA ⊥ BC
b) Xét ΔACE và ΔADC có:
(góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung EC)
⇒ ΔACE ∼ ΔADC (g.g)
⇒
⇒ AE.AD = AC2 = AH.AO (ΔACO vuông tại C có CH là đường cao)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.