Câu hỏi:
13/07/2024 1,496
Cho hình bình hành ABCD . Gọi M, N lần lượt là trung điểm AB, CD . Đường chéo BD cắt AN , CM theo thứ tự ở E và K. Chứng minh:
a) AMCN là hình bình hành.
b) DE = KB.
c) AK đi qua trung điểm của I của BC.
Cho hình bình hành ABCD . Gọi M, N lần lượt là trung điểm AB, CD . Đường chéo BD cắt AN , CM theo thứ tự ở E và K. Chứng minh:
a) AMCN là hình bình hành.
b) DE = KB.
c) AK đi qua trung điểm của I của BC.
Quảng cáo
Trả lời:
a) Hình bình hành ABCD có AB = CD
AB = AM = CD = CN
Mặt khác, M, N lần lượt là trung điểm của AB và CD
Do đó: AM//CN
Tứ giác AMCN có cặp cạnh đối vừa song song vừa bằng nhau nên là hình bình hành.
b) Tứ giác AMCN là hình bình hành
⇒ (Hai góc đối của hình bình hành AMCN)
⇒ (Do và là hai góc kề bù; và là hai góc kề bù)
Mặt khác, ABCD là hình bình hành nên AB//CD ⇒
Xét ΔEDN và ΔKBM có:
DN=BM
⇒ΔEDN=ΔKBM(g.c.g)
⇒ ED = KB (đpcm)
c) Gọi O là giao điểm của AC và BD.
ABCD là hình bình hành
⇒ OA=OC
Xét trong ΔCAB có:
MA = MB
OA = OC
MC cắt OB tại K
⇒ K là trọng tâm của ΔCAB
Mặt khác, I là trung điểm của BC
⇒ IA, OB, MC đồng quy tại K
Hay AK đi qua trung điểm I của BC (đpcm).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
sin2α =
Ta có: sin2α + cos2α = 1
Suy ra: cos2α = 1 – sin2α =
cos α =
Vì 90° < α < 180° nên cos α =
Lời giải
a) Vì AB, AC là tiếp tuyến của (O)
⇒ AB = AC mà OB = OC⇒ AO là đường trung trực của BC
⇒ OA ⊥ BC
b) Xét ΔACE và ΔADC có:
(góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung EC)
⇒ ΔACE ∼ ΔADC (g.g)
⇒
⇒ AE.AD = AC2 = AH.AO (ΔACO vuông tại C có CH là đường cao)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.