Câu hỏi:

13/07/2024 2,404 Lưu

Cho tam giác MNP vuông tại M đường cao MH . Gọi D,F lần lượt là chân các đường vuông góc HA từ H xuống MN và MP.

a) Chứng minh tứ giác MDHE là hình chữ nhật.

b) Gọi A là trung điểm HP. Chứng minh ∆DEA vuông.

c) Tam giác MNP có thêm điều kiện gì để DE = 2EA.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

a) Tứ giác MDHE có M^=D^=90°

Vậy tứ giác MDHE là hình chữ nhật vì có 3 góc vuông.
b) Ta có: DEH ^=MHE^ (do MDHE là hình chữ nhật)

HEA ^=EHA^ (dễ dàng chứng minh được HEA cân tại A nhờ giả thiết A trung điểm HP và HE MP)
Mà MHE^+EHA^=90°

nên  DEH^+HEA^=DEA^=90°
 Tam giác DEA vuông tại E.
c) Ta có: DE = MH
2EA = HP
Để DE = 2EA thì MH = HP
 Tam giác MHP cân tại H
 Tam giác MHP vuông cân tại H
 P^=45°
 Tam giác MNP vuông cân tại M.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

sin2α = 132=19

Ta có: sin2α + cos2α = 1

Suy ra: cos2α = 1 – sin2α = 119=89

cos α = ±89=±223

Vì 90° < α < 180° nên cos α =  223

Lời giải

Media VietJack

a) Vì AB, AC là tiếp tuyến của (O)

AB = AC mà OB = OC AO là đường trung trực của BC

OA BC

b) Xét ΔACE và ΔADC có: 

ACE^=ADC^ (góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung EC)

EAC^=DAC^

ΔACE ΔADC (g.g)

⇒ ACAD=AEAC

AE.AD = AC2 = AH.AO (ΔACO vuông tại C có CH là đường cao)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP