Câu hỏi:
13/07/2024 2,054
Cho tam giác ABC vuông tại A, có đường cao AH. Từ H kẻ HE vuông góc với AB tại E, HF vuông góc với AC tại F.
a) Cho biết AB = 3cm, = 30°. Tính độ dài các đoạn AC, HA.
b) Chứng minh: BE.BA + CF.CA + 2.HB.HC = BC2.
Cho tam giác ABC vuông tại A, có đường cao AH. Từ H kẻ HE vuông góc với AB tại E, HF vuông góc với AC tại F.
a) Cho biết AB = 3cm, = 30°. Tính độ dài các đoạn AC, HA.
b) Chứng minh: BE.BA + CF.CA + 2.HB.HC = BC2.
Quảng cáo
Trả lời:
a) Ta có: AB = BC. sin
BC = 3 : sin30° = 6(cm)
AC = (cm)
Lại có: SABC = AH.BC = AB.AC ⇒ AH =
b) Áp dụng hệ thức lượng trong các tam giác BHA, CHA có:
BE.BA = BH2; CF. CA = HC2
BE.BA + CF.CA + 2.HB.HC = BH2 + HC2 + 2.HB.HC = (BH + CH)2 = BC2.
Vậy BE.BA + CF.CA + 2.HB.HC = BC2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
sin2α =
Ta có: sin2α + cos2α = 1
Suy ra: cos2α = 1 – sin2α =
cos α =
Vì 90° < α < 180° nên cos α =
Lời giải
a) Vì AB, AC là tiếp tuyến của (O)
⇒ AB = AC mà OB = OC⇒ AO là đường trung trực của BC
⇒ OA ⊥ BC
b) Xét ΔACE và ΔADC có:
(góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung EC)
⇒ ΔACE ∼ ΔADC (g.g)
⇒
⇒ AE.AD = AC2 = AH.AO (ΔACO vuông tại C có CH là đường cao)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.