Câu hỏi:
13/07/2024 4,096
Cho đường tròn (O ; R) và một điểm A sao cho OA = 2R vẽ các tiếp tuyến AB, AC với (O;R) , B và C là các tiếp điểm. Vẽ đường kính BOD.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.
b) Chứng minh DC // OA.
c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh OCEA là hình thang cân.
Cho đường tròn (O ; R) và một điểm A sao cho OA = 2R vẽ các tiếp tuyến AB, AC với (O;R) , B và C là các tiếp điểm. Vẽ đường kính BOD.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.
b) Chứng minh DC // OA.
c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh OCEA là hình thang cân.
Quảng cáo
Trả lời:
a) AB, AC là tiếp tuyến của (O) nên = 90°
⇒ B, C cùng thuộc đường tròn đường kính OA
⇒ A, B, C, O cùng thuộc đường tròn đường kính OA
b) AB, AC là tiếp tuyến của (O) ⇒ AB = AC mà OB = OC = R
⇒ OA là trung trực BC ⇒ OA⊥ BC
ΔBCD nội tiếp (O;R) đường kính BD ⇒ = 90° ⇒ DC ⊥ BC
⇒ CD // OA ( cùng vuông góc với BC)
c) DC // OA ⇒ CE // OA ⇒ OCEA là hình thang
Có: (cùng phụ với )
Mà: (cùng phụ với )
Nên:
Xét ΔODE và Δ BOA có:
= 90°
OB = OD
⇒ ΔODE = Δ BOA (g–c–g)
⇒ OE = AB ⇒ OE = AC
⇒ OCEA là hình thang cân (đpcm).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
sin2α =
Ta có: sin2α + cos2α = 1
Suy ra: cos2α = 1 – sin2α =
cos α =
Vì 90° < α < 180° nên cos α =
Lời giải
a) Vì AB, AC là tiếp tuyến của (O)
⇒ AB = AC mà OB = OC⇒ AO là đường trung trực của BC
⇒ OA ⊥ BC
b) Xét ΔACE và ΔADC có:
(góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung EC)
⇒ ΔACE ∼ ΔADC (g.g)
⇒
⇒ AE.AD = AC2 = AH.AO (ΔACO vuông tại C có CH là đường cao)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.