Câu hỏi:
15/08/2023 804Chứng minh rằng: A = n3 + (n+1)3 + (n+2)3 chia hết cho 9 với mọi n thuộc ℕ.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Áp dụng hằng đẳng thức (a+b)3 = a3 + 3a2b + 3ab2 + b3 ta có
A = n3 + (n+1)3 + (n+2)3
= n3 + n3 + 3n2 + 3n + 1 + n3 + 6n2 + 12n + 8
= 3n3 + 9n2 + 15n + 9
= 3(n3 + 5n) + 9(n2 + 1)
Vậy để chứng minh A chia hết cho 9 thì ta sẽ chứng minh 3(n3 + 5n) chia hết cho 9 hay n3 + 5n3 chia hết cho 3.
Nếu n chia hết cho 3 thì hiển nhiên n3 + 5n = n(n2 + 5) chia hết cho 3. Do đó A chia hết cho 9.
Giả sử n chia 3 dư 1, khi đó tồn tại một số tự nhiên k sao cho n = 3k + 1. Thay vào ta có
n3 + 5n = n(n2 + 5)
= (3k + 1)[(3k + 1)2 + 5]
= (3k + 1)(9k2 + 6k + 1 + 5)
= (3k + 1)(9k2 + 6k + 6)
= (3k + 1).3.(3k2 + 2k + 2)
Vậy n3 + 5n chia hết cho 3, do đó 3(n3 + 5n) chia hết cho 9 nên A chia hết cho 9.
Với n chia 3 dư 2, tồn tại một số tự nhiên k sao cho n = 3k + 2. Thay vào ta có
n3 + 5n = n(n2 + 5)
= (3k + 2)[(3k + 2)2 + 5]
= (3k + 2)(9k2 + 12k + 4 + 5)
= (3k + 2)(9k2 + 12k + 9)
= (3k + 2).3.(3k2 + 4k + 3)
Vậy n3 + 5n chia hết cho 3, do đó 3(n3 + 5n) chia hết cho 9 nên A chia hết cho 9.
Vậy trong mọi trường hợp với n, A đều chia hết cho 9.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho tam giác ABC thỏa mãn . Chứng minh tam giác ABC là tam giác vuông.
Câu 3:
Một xe đi nửa đoạn đường đầu tiên với tốc độ trung bình v1 = 12km/h và nửa đoạn đường sau với tốc độ trung bình v2 = 20km/h. Tính tốc độ trung bình trên cả đoạn đường.
Câu 5:
Có 3 học sinh nữ và 2 học sinh nam. Ta muốn sắp xếp vào 1 bàn dài có 5 ghế ngồi. Hỏi có bao nhiêu cách xếp cho 3 học sinh nữ ngồi liền nhau.
Câu 7:
về câu hỏi!