Câu hỏi:

13/07/2024 434

Cho n là một số nguyên dương bất kỳ và Tn = 15 + 25 + 35 + ... + n5 , An = 1 + 2 + 3 + ... + n. Chứng minh: Tn chia hết An.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có tính chất an + bn a+b

Và An nn+12  2An = n(n+1)

Nên ta có:

2Tn = 2 (15 + 25 + 35 + ... + n5)

= (15 + n5) + [25 + (n – 1)5] + … + [25 + (n – 2)5]+ …

Áp dụng tính chất ta có: 15 + n5 (n+1)

[25 + (n−1)5] (n+1)

[35 + (n−2)5] (n+1)

...

Nên Tn = (15 + n5) + [25 + (n − 1)5] + [35 + (n−2)5] +... (n + 1)

Hay 2Tn (n+1)

 [15+(n−1)5] (1 + n – 1 = n)

(25+(n−2)5] n

[3+(n−3)]5 n

....

Nên 2Tn = [15 + (n−1)5] + (25 + (n−2)5] + [3 + (n−3)]5 + ... + n n

Hay 2Tn n

Ta có: 2Tn n; Tn n(n + 1)

Mà (n; n+1) = 1 nên 2Tn n.(n+1)

Hay 2Tn 2An

Tn chia hết An.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

sin2α = 132=19

Ta có: sin2α + cos2α = 1

Suy ra: cos2α = 1 – sin2α = 119=89

cos α = ±89=±223

Vì 90° < α < 180° nên cos α =  223

Lời giải

Media VietJack

a) Vì AB, AC là tiếp tuyến của (O)

AB = AC mà OB = OC AO là đường trung trực của BC

OA BC

b) Xét ΔACE và ΔADC có: 

ACE^=ADC^ (góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung EC)

EAC^=DAC^

ΔACE ΔADC (g.g)

⇒ ACAD=AEAC

AE.AD = AC2 = AH.AO (ΔACO vuông tại C có CH là đường cao)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP