Câu hỏi:

15/08/2023 392

Cho hình chữ nhật ABCD, M là một điểm bất kì.

Chứng minh: MA+MC=MB+MD

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi O là giao điểm của hai đường chéo AC và BD. Khi đó O là trung điểm của AC và BD. Do đó:

OA+OC=OB+OD=0

Ta có: MA+MC=MO+OA+MO+OC=2MO

MB+MD=MO+OB+MO+OD=2MO

Vậy MA+MC=MB+MD

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

sin2α = 132=19

Ta có: sin2α + cos2α = 1

Suy ra: cos2α = 1 – sin2α = 119=89

cos α = ±89=±223

Vì 90° < α < 180° nên cos α =  223

Lời giải

Media VietJack

a) Vì AB, AC là tiếp tuyến của (O)

AB = AC mà OB = OC AO là đường trung trực của BC

OA BC

b) Xét ΔACE và ΔADC có: 

ACE^=ADC^ (góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung EC)

EAC^=DAC^

ΔACE ΔADC (g.g)

⇒ ACAD=AEAC

AE.AD = AC2 = AH.AO (ΔACO vuông tại C có CH là đường cao)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP