Câu hỏi:

13/07/2024 2,206

Cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H.

a) Chứng minh: Tam giác ABE và tam giác AFC đồng dạng, AF. AB = AE . AC.

b) Chứng minh AEF^  = ABC^ .

c) Cho AE = 3cm, AB = 6cm. Chứng minh: SABC = 4SAEF.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

a) Tam giác BAC có BE, CF là đường cao nên CF AB, BE AC

AFC^  = AEB^  = 90°

Xét ∆ABE và ∆AFC có:

A^ chung

AFC^ AEB^   = 90°

∆ABE ~ ∆AFC (g.g)

⇒ AEAF=ABAC

AF.AB = AE.AC

b) Từ AEAF=ABAC  ⇒ AEAB=AFAC

Xét ∆AEF và ∆ABC có:

A^ chung

AEAB=AFAC

∆AEF ~ ∆ABC (c.g.c)

AEF^  ABC^   (2 góc tương ứng)

c) Ta có: ∆AEF ~ ∆ABC

 SABCSAEF=ABAE2=4

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

sin2α = 132=19

Ta có: sin2α + cos2α = 1

Suy ra: cos2α = 1 – sin2α = 119=89

cos α = ±89=±223

Vì 90° < α < 180° nên cos α =  223

Lời giải

Media VietJack

a) Vì AB, AC là tiếp tuyến của (O)

AB = AC mà OB = OC AO là đường trung trực của BC

OA BC

b) Xét ΔACE và ΔADC có: 

ACE^=ADC^ (góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung EC)

EAC^=DAC^

ΔACE ΔADC (g.g)

⇒ ACAD=AEAC

AE.AD = AC2 = AH.AO (ΔACO vuông tại C có CH là đường cao)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP