Câu hỏi:
13/07/2024 515
Cho tam giác ABC vuông tại A (AB<AC). Gọi D, E lần lượt là trung điểm của BC, AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của EF. Vẽ AH vuông góc với BC (H thuộc BC). trên đoạn thẳng HC lấy điểm M sao cho HM = MC. Chứng minh AM vuông góc với FM.
Cho tam giác ABC vuông tại A (AB<AC). Gọi D, E lần lượt là trung điểm của BC, AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của EF. Vẽ AH vuông góc với BC (H thuộc BC). trên đoạn thẳng HC lấy điểm M sao cho HM = MC. Chứng minh AM vuông góc với FM.
Quảng cáo
Trả lời:
D và E lần lượt là trung điểm của BC và AC nên DE là đường trung bình trong tam giác ABC
Do đó DE // AB; DE = AB
E và F đối xứng nhau qua D nên D là trung điểm FE
Do đó EF // AB và EF = AB = 2DE
Tứ giác ABFE có: và AB ⊥ AE nên ABFE là hình chữ nhật
Gọi I là giao điểm của AF và BE
ABFE là hình chữ nhật nên I là trung điểm của AF và BE và BE = FA
ME là đường trung bình trong ∆AHC nên ME // AH mà AH ⊥ BC ⇒ ME ⊥ BC
∆BME vuông tại M có trung tuyến MI nên MI = BE hay MI = FA
∆FAM có trung tuyến MI và MI = FA nên ∆AFM vuông tại M
Hay AM vuông góc với FM.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
sin2α =
Ta có: sin2α + cos2α = 1
Suy ra: cos2α = 1 – sin2α =
cos α =
Vì 90° < α < 180° nên cos α =
Lời giải
a) Vì AB, AC là tiếp tuyến của (O)
⇒ AB = AC mà OB = OC⇒ AO là đường trung trực của BC
⇒ OA ⊥ BC
b) Xét ΔACE và ΔADC có:
(góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung EC)
⇒ ΔACE ∼ ΔADC (g.g)
⇒
⇒ AE.AD = AC2 = AH.AO (ΔACO vuông tại C có CH là đường cao)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.