Câu hỏi:

13/07/2024 574

Tam giác ABC. Gọi D, E, F lần lượt là trung điểm của cạnh AB, AC, BC và M, N, P, Q theo thức tự là trung điểm của đoạn thẳng DA, AE, EF, FD

a. Chứng minh: EF là đường trung bình của tam giác ABC.

b. Chứng minh: Tứ giác DAEF, MNPQ là hình bình hành.

c. Khi tam giác ABC vuông tại A thì các tứ giác DAEF, MNPQ là hình gì?

d. Tìm điều kiện của tam giác ABC để tứ giác MNPQ là hình vuông

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

a) ΔABC có:

E là trung điểm của AC.

F là trung điểm của BC.

 EF là đường trung bình của ΔABC. (đpcm)

b) Ta có: EF là đường trung bình của ΔABC. (cmt)

EF // AB và EF = 12 AB.

Lại có: D là trung điểm của AB (gt) và D AB

AD  = 12 AB và AD // EF. (2)

Từ (1), (2) EF / AD và EF = AD.

 Tứ giác AEFD là hình bình hành. (đpcm)

ΔAED có:

N là trung điểm của AE. (gt)

M là trung điểm của AD. (gt)

 MN là đường trung bình của ΔAED.

MN // ED và MN = 12  ED. (3)

Chứng minh tương tự, ta được: PQ // ED và PQ = 12 ED.

Từ (3), (4) MN // PQ và MN = PQ.

 Tứ giác MNPQ là hình bình hành. (đpcm)

c) Khi ΔABC vuông tại A thì A^=90°

Suy ra hình bình hành DAEF có A^=90°  nên DAEF là hình chữ nhật

Khi đó AF = DE

Mặt khác theo tính chất đường trung bình ta có MN = 12  DE, NP = 12  AF

Khi đó: MN = NP

 MNPQ là hình bình hành có MN = NP nên MNPQ là hình thoi.

d) ΔABC vuông tại A thì MNPQ là hình thoi.

Để tứ giác MNPQ là hình vuông thì MN vuông góc NP mà MN // DE, NP // AF (tính chất đường trung bình)

Nếu DE AF mà DE // BC (tính chất đường trung bình). Suy ra: AF BC

Suy ra: ΔABC vuông tại A có AF vừa là đường trung tuyến vừa là đường cao nên ΔABC vuông cân tại A.

Vậy ΔABC vuông cân tại A thì MNPQ là hình vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho sin α = 13,  với 90° < α < 180°. Tính cos α.

Xem đáp án » 13/07/2024 77,279

Câu 2:

Một xe đi nửa đoạn đường đầu tiên với tốc độ trung bình v1 = 12km/h và nửa đoạn đường sau với tốc độ trung bình v2 = 20km/h. Tính tốc độ trung bình trên cả đoạn đường. 

Xem đáp án » 13/07/2024 25,163

Câu 3:

Cho tam giác ABC thỏa mãn sinA=sinB+sinCcosB+cosC . Chứng minh tam giác ABC là tam giác vuông.

Xem đáp án » 13/07/2024 25,064

Câu 4:

Tính diện tích tam giác ABC có AB = 3; BC = 5; CA = 6.

Xem đáp án » 13/07/2024 21,925

Câu 5:

Có 3 học sinh nữ và 2 học sinh nam. Ta muốn sắp xếp vào 1 bàn dài có 5 ghế ngồi. Hỏi có bao nhiêu cách xếp cho 3 học sinh nữ ngồi liền nhau.

Xem đáp án » 13/07/2024 18,459

Câu 6:

Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.

a) Chứng minh OA vuông góc với BC tại H.

b) Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn (O) tại E (khác D), Chứng minh: AE.AD = AH.AO.

Xem đáp án » 13/07/2024 15,010

Câu 7:

Có bao nhiêu số tròn nghìn có 5 chữ số?

Xem đáp án » 13/07/2024 14,952

Bình luận


Bình luận