Câu hỏi:
13/07/2024 150Cho phương trình (m + 1)16x – 2( 2m – 3) . 4x + 6m + 5 = 0 với m là tham số thực. Tìm tập tất cả các giá trị nguyên của m để phương trình có hai nghiệm trái dấu.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đặt t = 4x > 0
Ta có: (m + 1)t2 – 2(2m – 3)t + 6m + 5 = 0 (*)
Phương trình đã cho có hai nghiệm thảo mãn x1 < 0 < x2
Þ \[0 < {4^{{x_1}}} < {4^0} < {4^{{x_2}}}\]suy ra 0 < t1 < 1 < t2
Phương trình (*) có hai nghiệm t1; t2 thỏa mãn
\[0 < {t_1} < 1 < {t_2} \Leftrightarrow \left\{ \begin{array}{l}m + 1 \ne 0\\(m + 1)f(1) < 0\\(m + 1)f(1) > 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}m + 1 \ne 0\\(m + 1)(3m + 1) < 0\\(m + 1)(6m + 5) > 0\end{array} \right. \Leftrightarrow - 4 < m < - 1\]
Do đó m ∈ {–3; –2}.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Gọi a và b lần lượt là giá trị lớn nhất và bé nhất của hàm số y = ln(2x2 + e2) trên [0; e]. Tính tổng a + b.
Câu 3:
Cho tập A = {0; 1; 2; 3; 4; 5; 6}. Gọi X là tập các số tự nhiên có 5 chữ số khác nhau được lập từ A. Chọn một số từ X, tính xác suất sao cho số được chọn có đúng 3 chữ số chẵn.
Câu 4:
Cho hàm số f(x) thỏa mãn \[f\left( 2 \right) = - \frac{2}{9}\]và f ′(x) = 2x[f(x)]2 với mọi \[x \in \mathbb{R}\]. Tính giá trị của f(1).
Câu 7:
Một trường có 50 học sinh giỏi trong đó có 4 cặp anh em sinh đôi. Cần chọn ra 3 học sinh trong số 50 học sinh để tham dự trại hè. Tính xác suất trong 3 em ấy không có cặp anh em sinh đôi?
về câu hỏi!