Câu hỏi:
13/07/2024 237
Cho hình phẳng (H) giới hạn bởi đường parabol (P): y = x2 − x + 2 và tiếp tuyến của đồ thị hàm số y = x2 + 1 tại điểm có tọa độ (1; 2). Tính diện tích của hình (H).
Cho hình phẳng (H) giới hạn bởi đường parabol (P): y = x2 − x + 2 và tiếp tuyến của đồ thị hàm số y = x2 + 1 tại điểm có tọa độ (1; 2). Tính diện tích của hình (H).
Quảng cáo
Trả lời:
Đặt y = f(x) = x2 + 1
Ta có: f′(x) = 2x
Phương trình tiếp tuyến (d) của parabol (P): y = x2 + 1 tại điểm có tọa độ (1; 2) có dạng:
y = f′(1) (x−1) + 2 = 2(x − 1) + 2 hay y = 2x
Phương trình hoành độ giao điểm của (d) và (P):
\[{x^2} - x + 2 = 2x \Leftrightarrow {x^2} - 3x + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\]
Diện tích của hình (H) là: \[S\left( x \right) = \mathop \smallint \limits_1^2 \left| {{x^2} - 3x + 2} \right|dx = \frac{1}{6}\]
Vậy diện tích của hình (H) là \[\frac{1}{6}\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
(sin2 x)’ = 2sin x.(sin x)’ = 2sin x cos x = sin 2x.
Vậy đạo hàm của hàm số sin2 x là sin 2x.
Lời giải
Ta có: cosx ∈ [−1; 1]
Để phương trình có nghiệm thì:
− 1 ≤ m − 1 ≤ 1 suy ra 0 ≤ m ≤ 2
Vậy m ∈ [0; 2].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.