Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Với n = 1 ta có\[{S_1} = {1^2} = \frac{{1 = 1(1 + 1)(2.1 + 1)}}{6}\]
Với n = 2 ta có\[{S_2} = {1^2} + {2^2} = 5 = \frac{{2(2 + 1)(2.2 + 1)}}{6}\]
Với n = 3 ta có\[{S_3} = {1^2} + {2^2} + {3^2} = 14 = \frac{{3(3 + 1)(2.3 + 1)}}{6}\]
Dự đoán \[{S_n} = \frac{{n(n + 1)(2n + 1)}}{6}\](*), ta sẽ chứng minh đẳng thức (*) đúng bằng phương pháp quy nạp.
Với n = 1 thì (*) đúng.
Giả sử (*) đúng đến n = k, tức là\[{S_k} = {1^2} + {2^2} + ... + {k^2} = \frac{{k\left( {k + 1} \right)\left( {2k + 1} \right)}}{6}\] ta chứng minh (*) đúng đến n = k + 1, tức là cần chứng minh\[{S_{k + 1}} = {1^2} + {2^2} + ... + {\left( {k + 1} \right)^2} = \frac{{\left( {k + 1} \right)\left( {\left( {k + 1} \right) + 1} \right)\left( {2\left( {k + 1} \right) + 1} \right)}}{6}\]
Ta có:
\[{S_{k + 1}} = {1^2} + {2^2} + ... + {\left( {k + 1} \right)^2} = \frac{{k\left( {k + 1} \right)\left( {2k + 1} \right)}}{6} + {(k + 1)^2}\]
\[ = \frac{{(k + 1)(2{k^2} + k + 6k + 6)}}{6} = \frac{{(k + 1)(2{k^2} + 7k + 6)}}{6} = \frac{{(k + 1)(k + 2)(2k + 3)}}{6}\]
\[ = \frac{{(k + 1)((k + 1) + 1)(2(k + 1) + 1)}}{6}\]
Þ (*) đúng với mọi n.
Vậy \[{S_n} = \frac{{n(n + 1)(2n + 1)}}{6}\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Gọi a và b lần lượt là giá trị lớn nhất và bé nhất của hàm số y = ln(2x2 + e2) trên [0; e]. Tính tổng a + b.
Câu 3:
Cho tập A = {0; 1; 2; 3; 4; 5; 6}. Gọi X là tập các số tự nhiên có 5 chữ số khác nhau được lập từ A. Chọn một số từ X, tính xác suất sao cho số được chọn có đúng 3 chữ số chẵn.
Câu 4:
Cho hàm số f(x) thỏa mãn \[f\left( 2 \right) = - \frac{2}{9}\]và f ′(x) = 2x[f(x)]2 với mọi \[x \in \mathbb{R}\]. Tính giá trị của f(1).
Câu 7:
Một trường có 50 học sinh giỏi trong đó có 4 cặp anh em sinh đôi. Cần chọn ra 3 học sinh trong số 50 học sinh để tham dự trại hè. Tính xác suất trong 3 em ấy không có cặp anh em sinh đôi?
về câu hỏi!