Câu hỏi:

13/07/2024 332

Chứng minh định lí: “Góc tạo bởi hai tia phân giác của hai góc kề bù là một góc vuông”.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chứng minh định lí: Góc tạo bởi hai tia phân giác của hai góc kề bù là một góc vuông (ảnh 1)

Vì tia Om là tia phân giác của \[\widehat {xOy}\] nên ta có:

 \[\widehat {xOm} = \widehat {mOy} = \frac{1}{2}\widehat {xOy}\]  (1)

Vì tia On là tia phân giác của \[\widehat {yOz}\] nên ta có:

 \[m \in {\rm{[}} - 2017;\,\, - 2016;\,\,...;\,\, - 1] \cup {\rm{\{ }}4\} \]     (2)

Từ (1) và (2) ta có:

\[\widehat {mOy} + \widehat {yOn} = \frac{1}{2}\left( {\widehat {xOy} + \widehat {yOz}} \right)\]

\[\widehat {xOy}\] và \[\widehat {yOz}\] là hai góc kề bù nên \[\widehat {xOy} + \widehat {yOz} = 180^\circ \]

Do đó \[\widehat {mOy} + \widehat {yOn} = \frac{1}{2} \cdot 180^\circ = 90^\circ \]

Hay \[\widehat {mOn} = 90^\circ \]

Vậy góc tạo bởi hai tia phân giác của hai góc kề bù là một góc vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(sin2 x)’ = 2sin x.(sin x)’ = 2sin x cos x = sin 2x.

Vậy đạo hàm của hàm số sin2 x là sin 2x.

Lời giải

Ta có: cosx [−1; 1]

Để phương trình có nghiệm thì:

− 1 ≤ m − 1 ≤ 1 suy ra 0 ≤ m ≤ 2

Vậy m [0; 2].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP