Câu hỏi:

13/07/2024 2,382

Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB // CD và AB = 2DC. Gọi O là giao điểm của AC và BD, G là trọng tâm tam giác SBC, H là giao điểm của DG và (SAC). Tính tỉ số \[\frac{{GH}}{{GD}}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB // CD và AB = 2DC. Gọi O  (ảnh 1)

Gọi M là trung điểm của BC, I = AC ∩ DM .

Trong (SDM) gọi H = DG ∩ SI ta có:

I AC I (SAC) SI SAC

H SI H (SAC) H = DG ∩ (SAC).

Gọi N là trung điểm của AD, E = AC ∩ MN

Nên MN là đường trung bình của hình thang ABCD

\[ \Rightarrow MN = \frac{{AB + CD}}{2} = \frac{{2CD + CD}}{2} = \frac{{3CD}}{2}\]

Áp dụng định lí Ta-lét, ta có:

\[\frac{{NE}}{{CD}} = \frac{{AN}}{{AD}} = \frac{1}{2} \Rightarrow NE = \frac{1}{2}CD \Rightarrow ME = \frac{3}{2}CD - \frac{1}{2}CD = CD\]

\[\frac{{IM}}{{ID}} = \frac{{CD}}{{MN}} = \frac{{ME}}{{CD}} = 1 \Rightarrow IM = ID\]

Kẻ GK // DM, áp dụng định lí Vi-ét ta có:

\[\frac{{GH}}{{DH}} = \frac{{KG}}{{ID}} = \frac{{KG}}{{IM}} = \frac{{KG}}{{IM}} = \frac{{SG}}{{SM}} = \frac{2}{3}\]

\[ \Rightarrow \frac{{GH}}{{GH + DH}} = \frac{2}{{2 + 3}} = \frac{2}{5} \Rightarrow \frac{{GH}}{{GD}} = \frac{2}{5}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(sin2 x)’ = 2sin x.(sin x)’ = 2sin x cos x = sin 2x.

Vậy đạo hàm của hàm số sin2 x là sin 2x.

Lời giải

Ta có: cosx [−1; 1]

Để phương trình có nghiệm thì:

− 1 ≤ m − 1 ≤ 1 suy ra 0 ≤ m ≤ 2

Vậy m [0; 2].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay