Câu hỏi:

12/07/2024 2,653

Cho hình chóp S.ABCD, có đáy ABCD là hình chữ nhật với AB = a, \(AD = a\sqrt 2 \), SA = a và SA vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt là trung điểm của AD, SC. Giả sử I là giao điểm của BM và AC. Tính thể tích tứ diện ANIB.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD, có đáy ABCD là hình chữ nhật với AB = a, AD = a căn bậc hai 2 (ảnh 1)

Gọi O là tâm của đáy ABCD.

Trong tam giác SAC, ta có NO là đường trung bình nên NO // SA.

Tức là NO (ABCD) và \(NO = \frac{a}{2}\).

Ta có \({V_{ANIB}} = {V_{NAIB}} = \frac{1}{3}.{S_{AIB}}.NO = \frac{3}{6}.{S_{AIB}}(1)\)

Ta tính diện tích tam giác AIB:

Xét hình chữ nhật ABCD. Do MA = MD

\( \Rightarrow MA = \frac{1}{2}BD \Rightarrow AI = \frac{1}{2}IC\)

\( \Rightarrow AI = \frac{1}{3}AC \Rightarrow A{I^2} = \frac{{A{C^2}}}{9} = \frac{{2{a^2} + {a^2}}}{9} = \frac{{{a^2}}}{3}\)

Lại có \(BI = \frac{2}{3}BM \Rightarrow B{I^2} = \frac{4}{9}B{M^2} = \frac{4}{9}\left( {{a^2} + \frac{{{a^2}}}{2}} \right) = \frac{{2{a^2}}}{3}\)

Do đó AI2 + BI2 = a2 = AB2, nên AIB là tam giác vuông đỉnh I.

Vậy \({S_{AIB}} = \frac{1}{2}.IA.IB = \frac{1}{2}.\frac{{a\sqrt 3 }}{3}.\frac{{a\sqrt 6 }}{3} = \frac{{{a^2}\sqrt 2 }}{6}(2)\)

Thay (2) vào (1) ta có: \({V_{ANIB}} = \frac{{{a^3}\sqrt 2 }}{{36}}(dvtt)\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y = ax3 + bx2 + cx + d (a ≠ 0) có đồ thị nhứ hình vẽ dưới đây. Chọn khẳng định đúng về dấu của a, b, c, d.

Cho hàm số y = ax^3 + bx^2 + cx + d (a khác 0) có đồ thị nhứ hình vẽ dưới đây (ảnh 1)

Xem đáp án » 17/08/2023 13,391

Câu 2:

Cho hình chóp S.ABC, gọi G là trọng tâm tam giác ABC. Tìm mệnh đề đúng trong các mệnh đề sau:

Xem đáp án » 17/08/2023 13,055

Câu 3:

Tập nghiệm của bất phương trình \({\left( {\frac{2}{3}} \right)^x} > 0\)

Xem đáp án » 17/08/2023 5,611

Câu 4:

Cho hàm số y = x4 + 8x2 + m có giá trị nhỏ nhất trên [1; 3] bằng 6. Tham số thực m bằng

Xem đáp án » 17/08/2023 5,057

Câu 5:

Cho hình nó (N) có đỉnh S, bán kính đáy bằng a và độ dài đường sinh bằng 4a. Gọi (T) là mặt cầu đi qua S và đường tròn đáy của (N). Bán kính của (T) bằng:

Xem đáp án » 17/08/2023 5,016

Câu 6:

Rút gọn biểu thức \(Q = {b^{\frac{5}{3}}}:\sqrt[3]{b}\) với b > 0

Xem đáp án » 17/08/2023 4,877

Câu 7:

Cho hệ phương trình \[\left\{ \begin{array}{l}\left( {m - 1} \right)x + y = 2\\mx + y = m + 1\end{array} \right.\] với m là tham số.

Chứng minh rằng với mọi giá trị của m thì hệ phương trình luôn có nghiệm duy nhất (x; y) thỏa mãn 2x + y ≤ 3.

Xem đáp án » 12/07/2024 3,686
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua