Câu hỏi:
12/07/2024 1,899Cho hình chóp S.ABCD, có đáy ABCD là hình chữ nhật với AB = a, \(AD = a\sqrt 2 \), SA = a và SA vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt là trung điểm của AD, SC. Giả sử I là giao điểm của BM và AC. Tính thể tích tứ diện ANIB.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi O là tâm của đáy ABCD.
Trong tam giác SAC, ta có NO là đường trung bình nên NO // SA.
Tức là NO ⊥ (ABCD) và \(NO = \frac{a}{2}\).
Ta có \({V_{ANIB}} = {V_{NAIB}} = \frac{1}{3}.{S_{AIB}}.NO = \frac{3}{6}.{S_{AIB}}(1)\)
Ta tính diện tích tam giác AIB:
Xét hình chữ nhật ABCD. Do MA = MD
\( \Rightarrow MA = \frac{1}{2}BD \Rightarrow AI = \frac{1}{2}IC\)
\( \Rightarrow AI = \frac{1}{3}AC \Rightarrow A{I^2} = \frac{{A{C^2}}}{9} = \frac{{2{a^2} + {a^2}}}{9} = \frac{{{a^2}}}{3}\)
Lại có \(BI = \frac{2}{3}BM \Rightarrow B{I^2} = \frac{4}{9}B{M^2} = \frac{4}{9}\left( {{a^2} + \frac{{{a^2}}}{2}} \right) = \frac{{2{a^2}}}{3}\)
Do đó AI2 + BI2 = a2 = AB2, nên AIB là tam giác vuông đỉnh I.
Vậy \({S_{AIB}} = \frac{1}{2}.IA.IB = \frac{1}{2}.\frac{{a\sqrt 3 }}{3}.\frac{{a\sqrt 6 }}{3} = \frac{{{a^2}\sqrt 2 }}{6}(2)\)
Thay (2) vào (1) ta có: \({V_{ANIB}} = \frac{{{a^3}\sqrt 2 }}{{36}}(dvtt)\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax3 + bx2 + cx + d (a ≠ 0) có đồ thị nhứ hình vẽ dưới đây. Chọn khẳng định đúng về dấu của a, b, c, d.
Câu 2:
Cho hình chóp S.ABC, gọi G là trọng tâm tam giác ABC. Tìm mệnh đề đúng trong các mệnh đề sau:
Câu 3:
Cho hình nó (N) có đỉnh S, bán kính đáy bằng a và độ dài đường sinh bằng 4a. Gọi (T) là mặt cầu đi qua S và đường tròn đáy của (N). Bán kính của (T) bằng:
Câu 4:
Cho hàm số y = x4 + 8x2 + m có giá trị nhỏ nhất trên [1; 3] bằng 6. Tham số thực m bằng
Câu 5:
Tập nghiệm của bất phương trình \({\left( {\frac{2}{3}} \right)^x} > 0\) là
Câu 6:
Cho 2 số thực x, y thỏa mãn \({\log _2}\frac{{{x^2} + {y^2}}}{{3xy + {x^2}}} + {x^2} + 2{y^2} + 1 \le 3xy\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{{2{x^2} - xy + 2{y^2}}}{{2xy - {y^2}}}\).
Câu 7:
Cho hệ phương trình \[\left\{ \begin{array}{l}\left( {m - 1} \right)x + y = 2\\mx + y = m + 1\end{array} \right.\] với m là tham số.
Chứng minh rằng với mọi giá trị của m thì hệ phương trình luôn có nghiệm duy nhất (x; y) thỏa mãn 2x + y ≤ 3.
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
về câu hỏi!