Câu hỏi:
12/07/2024 2,876
Cho hình chóp S.ABCD, có đáy ABCD là hình chữ nhật với AB = a, \(AD = a\sqrt 2 \), SA = a và SA vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt là trung điểm của AD, SC. Giả sử I là giao điểm của BM và AC. Tính thể tích tứ diện ANIB.
Cho hình chóp S.ABCD, có đáy ABCD là hình chữ nhật với AB = a, \(AD = a\sqrt 2 \), SA = a và SA vuông góc với mặt phẳng (ABCD). Gọi M, N lần lượt là trung điểm của AD, SC. Giả sử I là giao điểm của BM và AC. Tính thể tích tứ diện ANIB.
Quảng cáo
Trả lời:

Gọi O là tâm của đáy ABCD.
Trong tam giác SAC, ta có NO là đường trung bình nên NO // SA.
Tức là NO ⊥ (ABCD) và \(NO = \frac{a}{2}\).
Ta có \({V_{ANIB}} = {V_{NAIB}} = \frac{1}{3}.{S_{AIB}}.NO = \frac{3}{6}.{S_{AIB}}(1)\)
Ta tính diện tích tam giác AIB:
Xét hình chữ nhật ABCD. Do MA = MD
\( \Rightarrow MA = \frac{1}{2}BD \Rightarrow AI = \frac{1}{2}IC\)
\( \Rightarrow AI = \frac{1}{3}AC \Rightarrow A{I^2} = \frac{{A{C^2}}}{9} = \frac{{2{a^2} + {a^2}}}{9} = \frac{{{a^2}}}{3}\)
Lại có \(BI = \frac{2}{3}BM \Rightarrow B{I^2} = \frac{4}{9}B{M^2} = \frac{4}{9}\left( {{a^2} + \frac{{{a^2}}}{2}} \right) = \frac{{2{a^2}}}{3}\)
Do đó AI2 + BI2 = a2 = AB2, nên AIB là tam giác vuông đỉnh I.
Vậy \({S_{AIB}} = \frac{1}{2}.IA.IB = \frac{1}{2}.\frac{{a\sqrt 3 }}{3}.\frac{{a\sqrt 6 }}{3} = \frac{{{a^2}\sqrt 2 }}{6}(2)\)
Thay (2) vào (1) ta có: \({V_{ANIB}} = \frac{{{a^3}\sqrt 2 }}{{36}}(dvtt)\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Ta có: G là trọng tâm tam giác ABC nên:
\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
\( \Rightarrow \overrightarrow {SA} - \overrightarrow {SG} + \overrightarrow {SB} - \overrightarrow {SG} + \overrightarrow {SC} - \overrightarrow {SG} = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} - 3\overrightarrow {SG} = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \)
Vậy \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \).
Lời giải
Đáp án đúng là: D
Dựa vào đồ thị ta có a > 0, đồ thị cắt Oy tại 1 điểm có tung độ dương nên d > 0, đồ thị có 2 cực trị trái dấu nên:
x1.x2 < 0 \( \Rightarrow \frac{c}{a} < 0\) ⇒ c < 0
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.