Câu hỏi:

17/08/2023 229

Cho tam giác đều ABC nội tiếp đường tròn tâm I đường kính AA’, M là trung điểm của BC. Khi quay tam giác ABM cùng với nửa hình tròn đường kính AA’ xung quanh đường thẳng AM (như hình vẽ minh họa), ta được khối nón và khối cầu có thể tích lần lượt là V1 và V2. Tỉ số \(\frac{{{V_1}}}{{{V_2}}}\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Cho tam giác đều ABC nội tiếp đường tròn tâm I đường kính AA’, M là trung điểm  (ảnh 1)

Giả sử tam giác ABC đều cạnh 1, khi đó ta có \(AM = \frac{{\sqrt 3 }}{2}\)

\( \Rightarrow AI = \frac{2}{3}.\frac{{\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{3} = R\)

\( \Rightarrow {V_2} = \frac{4}{3}\pi .{R^3} = \frac{4}{3}\pi {\left( {\frac{{\sqrt 3 }}{3}} \right)^3} = \frac{{4\sqrt 3 }}{{27}}\)

\({V_1} = \frac{1}{3}\pi .B{M^2}.AM = \frac{1}{3}\pi .{\left( {\frac{1}{2}} \right)^2}.\frac{{\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{{24}}\)

Vậy \(\frac{{{V_1}}}{{{V_2}}} = \frac{{\frac{{\sqrt 3 }}{{24}}}}{{\frac{{4\sqrt 3 }}{{27}}}} = \frac{9}{{32}}\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho hình chóp S.ABC, gọi G là trọng tâm tam giác ABC. Tìm mệnh đề đúng trong các mệnh đề sau:

Lời giải

Đáp án đúng là: D

Ta có: G là trọng tâm tam giác ABC nên:

\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)

\( \Rightarrow \overrightarrow {SA} - \overrightarrow {SG} + \overrightarrow {SB} - \overrightarrow {SG} + \overrightarrow {SC} - \overrightarrow {SG} = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} - 3\overrightarrow {SG} = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \)

Vậy \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \).

Câu 2

Cho hàm số y = ax3 + bx2 + cx + d (a ≠ 0) có đồ thị nhứ hình vẽ dưới đây. Chọn khẳng định đúng về dấu của a, b, c, d.

Cho hàm số y = ax^3 + bx^2 + cx + d (a khác 0) có đồ thị nhứ hình vẽ dưới đây (ảnh 1)

Lời giải

Đáp án đúng là: D

Dựa vào đồ thị ta có a > 0, đồ thị cắt Oy tại 1 điểm có tung độ dương nên d > 0, đồ thị có 2 cực trị trái dấu nên:

x1.x2 < 0 \( \Rightarrow \frac{c}{a} < 0\) c < 0

Câu 3

Rút gọn biểu thức \(Q = {b^{\frac{5}{3}}}:\sqrt[3]{b}\) với b > 0

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay