Câu hỏi:

17/08/2023 144

Cho đường tròn (O; R) và điểm A cố định ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên d lấy M. Qua M kẻ tiếp tuyến ME, MF với (O). Nối EF cắt OM tại H, cắt OA tại B.

a) Chứng minh tứ giác ABHM nội tiếp.

b) Chứng minh OA.OB = OH.OM = R2.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường tròn (O; R) và điểm A cố định ngoài đường tròn. Vẽ đường thẳng d vuông  (ảnh 1)

a) Do ME, MF là tiếp tuyến với đường tròn suy ra ME = MF nên M thuộc đường trung trực của EF.

Ta có OE = OF nên O thuộc đường trung trực của EF.

Do đó OM là đường trung trực của EF.

 EF  OM.

Tứ giác ABHM có \(\widehat {BAM} = \widehat {BHM} = 90^\circ \), mà hai góc này ở vị trí đối nhau nên tứ giác này nội tiếp đường tròn bán kính MB.

b) Xét ∆OHB và ∆OAM có:

\(\widehat {OHB} = \widehat {OAM} = 90^\circ \); \(\widehat {MOA}\) chung

 (g.g)

\( \Rightarrow \frac{{OH}}{{OA}} = \frac{{OB}}{{AM}}\)

OA.OB = OH.OM (1)

Xét ∆OHE và ∆OEM có:

\(\widehat {OHE} = \widehat {OEM} = 90^\circ \); \(\widehat {MOE}\) chung

Do đó  (g.g)

Suy ra \(\frac{{OH}}{{OE}} = \frac{{OE}}{{OM}}\)

Hay OH.OM = OE2 (2)

Từ (1) và (2) suy ra OA.OB = OH.OM = OE2 = R2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y = ax3 + bx2 + cx + d (a ≠ 0) có đồ thị nhứ hình vẽ dưới đây. Chọn khẳng định đúng về dấu của a, b, c, d.

Cho hàm số y = ax^3 + bx^2 + cx + d (a khác 0) có đồ thị nhứ hình vẽ dưới đây (ảnh 1)

Xem đáp án » 17/08/2023 12,538

Câu 2:

Cho hình chóp S.ABC, gọi G là trọng tâm tam giác ABC. Tìm mệnh đề đúng trong các mệnh đề sau:

Xem đáp án » 17/08/2023 9,923

Câu 3:

Cho hình nó (N) có đỉnh S, bán kính đáy bằng a và độ dài đường sinh bằng 4a. Gọi (T) là mặt cầu đi qua S và đường tròn đáy của (N). Bán kính của (T) bằng:

Xem đáp án » 17/08/2023 4,850

Câu 4:

Cho hàm số y = x4 + 8x2 + m có giá trị nhỏ nhất trên [1; 3] bằng 6. Tham số thực m bằng

Xem đáp án » 17/08/2023 4,788

Câu 5:

Tập nghiệm của bất phương trình \({\left( {\frac{2}{3}} \right)^x} > 0\)

Xem đáp án » 17/08/2023 4,685

Câu 6:

Cho 2 số thực x, y thỏa mãn \({\log _2}\frac{{{x^2} + {y^2}}}{{3xy + {x^2}}} + {x^2} + 2{y^2} + 1 \le 3xy\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{{2{x^2} - xy + 2{y^2}}}{{2xy - {y^2}}}\).

Xem đáp án » 17/08/2023 2,897

Câu 7:

Cho hệ phương trình \[\left\{ \begin{array}{l}\left( {m - 1} \right)x + y = 2\\mx + y = m + 1\end{array} \right.\] với m là tham số.

Chứng minh rằng với mọi giá trị của m thì hệ phương trình luôn có nghiệm duy nhất (x; y) thỏa mãn 2x + y ≤ 3.

Xem đáp án » 12/07/2024 2,359

Bình luận


Bình luận