Câu hỏi:
17/08/2023 112Hai bạn Bình và Lan cùng dự thi trong kì thi THPT Quốc gia 2018 và ở hai phòng thi khác nhau. Mỗi phòng thi có 24 thí sinh, mỗi môn thi có 24 mã đề khác nhau. Đề thi được sắp xếp và phát cho thí sinh một cách ngẫu nhiên. Xác suất để hai môn thi Toán và Tiếng Anh, Bình và Lan có chung một mã đề thi bằng nhau là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Hai bạn Bình và Lan có cùng 1 mã đề, cùng 1 môn thi (Toán hoặc Tiếng Anh) có 21 cách.
Môn còn lại khác nhau nên có 24.23 cách chọn,
Do đó có 2.24.24.23 = 26 496 cách để Bình và Lan có chung mã đề.
Vậy xác suất cần tìm là: \(P = \frac{{26\,\,496}}{{{{24}^2}\,.\,{{24}^2}}} = \frac{{23}}{{288}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax3 + bx2 + cx + d (a ≠ 0) có đồ thị nhứ hình vẽ dưới đây. Chọn khẳng định đúng về dấu của a, b, c, d.
Câu 2:
Cho hình chóp S.ABC, gọi G là trọng tâm tam giác ABC. Tìm mệnh đề đúng trong các mệnh đề sau:
Câu 3:
Cho hình nó (N) có đỉnh S, bán kính đáy bằng a và độ dài đường sinh bằng 4a. Gọi (T) là mặt cầu đi qua S và đường tròn đáy của (N). Bán kính của (T) bằng:
Câu 4:
Cho hàm số y = x4 + 8x2 + m có giá trị nhỏ nhất trên [1; 3] bằng 6. Tham số thực m bằng
Câu 5:
Tập nghiệm của bất phương trình \({\left( {\frac{2}{3}} \right)^x} > 0\) là
Câu 6:
Cho 2 số thực x, y thỏa mãn \({\log _2}\frac{{{x^2} + {y^2}}}{{3xy + {x^2}}} + {x^2} + 2{y^2} + 1 \le 3xy\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{{2{x^2} - xy + 2{y^2}}}{{2xy - {y^2}}}\).
Câu 7:
Cho hàm số y = x4 – 2mx2 + m. Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị:
về câu hỏi!