Câu hỏi:

17/08/2023 240 Lưu

Tính diện tích hình phẳng giới hạn bởi y = x2; \(y = \frac{{{x^2}}}{{27}}\); \(y = \frac{{27}}{x}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có các hoành độ giao điểm:

\(\left\{ \begin{array}{l}{x^2} = \frac{{{x^2}}}{{27}} \Leftrightarrow x = 0\\{x^2} = \frac{{27}}{x} \Leftrightarrow x = 3\\\frac{{{x^2}}}{{27}} = \frac{{27}}{x} \Leftrightarrow x = 9\end{array} \right.\)

Gọi S là diện tích cần xác định, ta có: S = S1 + S2

= \(\int\limits_0^3 {\left( {{x^2} - \frac{{{x^2}}}{{27}}} \right)} dx + \int\limits_3^9 {\left( {\frac{{27}}{x} - \frac{{{x^2}}}{{27}}} \right)dx} \)

\(\)\( = \left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^3}}}{{81}}} \right)} \right|_0^3 + \left. {\left( {27\ln x - \frac{{{x^3}}}{{81}}} \right)} \right|_3^9 = 27\ln 3\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: D

Ta có: G là trọng tâm tam giác ABC nên:

\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)

\( \Rightarrow \overrightarrow {SA} - \overrightarrow {SG} + \overrightarrow {SB} - \overrightarrow {SG} + \overrightarrow {SC} - \overrightarrow {SG} = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} - 3\overrightarrow {SG} = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \)

Vậy \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \).

Câu 2

Lời giải

Đáp án đúng là: D

Dựa vào đồ thị ta có a > 0, đồ thị cắt Oy tại 1 điểm có tung độ dương nên d > 0, đồ thị có 2 cực trị trái dấu nên:

x1.x2 < 0 \( \Rightarrow \frac{c}{a} < 0\) c < 0

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP