Xác định m để đồ thị của hàm số y = 2x + 3 song song với đồ thị hàm số
y = (m2 – 2m + 2)x + 2m – 1.
Xác định m để đồ thị của hàm số y = 2x + 3 song song với đồ thị hàm số
y = (m2 – 2m + 2)x + 2m – 1.
A. m = 1;
B. m = 2;
C. m = 0;
D. m = −1.
Quảng cáo
Trả lời:

Đáp án đúng là: C
Đường thẳng y = 2x + 3 song song với đường thẳng
y = (m2 – 2m + 2)x + 2m – 1
\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 2m + 2 = 2\\2m - 1 \ne 3\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 2m = 0\\2m \ne 4\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 0\\m = 2\end{array} \right.\\m \ne 2\end{array} \right. \Leftrightarrow m = 0\)
Vậy với m = 0 thỏa mãn yêu cầu bài toán.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 4\overrightarrow {SG} \);
B. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = \overrightarrow {SG} \);
C. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 2\overrightarrow {SG} \);
D. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \).
Lời giải
Đáp án đúng là: D
Ta có: G là trọng tâm tam giác ABC nên:
\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
\( \Rightarrow \overrightarrow {SA} - \overrightarrow {SG} + \overrightarrow {SB} - \overrightarrow {SG} + \overrightarrow {SC} - \overrightarrow {SG} = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} - 3\overrightarrow {SG} = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \)
Vậy \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \).
Câu 2
A. a > 0, b > 0, C > 0, d > 0;
B. a > 0, c > 0 > b, d < 0;
C. a > 0, b > 0, c > 0, d > 0;
D. a > 0, b < 0, c < 0, d > 0.
Lời giải
Đáp án đúng là: D
Dựa vào đồ thị ta có a > 0, đồ thị cắt Oy tại 1 điểm có tung độ dương nên d > 0, đồ thị có 2 cực trị trái dấu nên:
x1.x2 < 0 \( \Rightarrow \frac{c}{a} < 0\) ⇒ c < 0
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Q = b2;
B. \(Q = {b^{\frac{5}{9}}}\);
C. \(Q = {b^{ - \frac{4}{3}}}\);
D. \(Q = {b^{\frac{4}{3}}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. (−∞; 0);
B. (1; + ∞);
C. (0; 1);
D. ℝ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. −42;
B. 6;
C. 15;
D. −3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\frac{{2\sqrt 6 a}}{3}\);
B. \(\frac{{16\sqrt {15} a}}{{15}}\);
C. \(\frac{{8\sqrt {15} a}}{{15}}\);
D. \(\sqrt {15} a\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.