Câu hỏi:

17/08/2023 3,531 Lưu

Cho 2 số thực x, y thỏa mãn \({\log _2}\frac{{{x^2} + {y^2}}}{{3xy + {x^2}}} + {x^2} + 2{y^2} + 1 \le 3xy\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{{2{x^2} - xy + 2{y^2}}}{{2xy - {y^2}}}\).

A. \(\frac{3}{2}\);

B. \(\frac{5}{2}\);

C. \(\frac{1}{2}\);

D. \(\frac{7}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Biến đổi giả thiết ta có:

\({\log _2}\frac{{{x^2} + {y^2}}}{{3xy + {x^2}}} + 1 + 2{x^2} + 2{y^2} \le 3xy + {x^2}\)

\( \Leftrightarrow {\log _2}\frac{{2{x^2} + 2{y^2}}}{{3xy + {x^2}}} + 2{x^2} + 2{y^2} \le 3xy + {x^2} - 1\)

\( \Leftrightarrow {\log _2}\left( {2{x^2} + 2{y^2}} \right) + 2{x^2} + 2{y^2} \le {\log _2}\left( {3xy + {x^2}} \right) + 3xy + {x^2}\)

2x2 + 2y2 ≤ 3xy + x2

x2 – 3xy + 2y2 ≤ 0

\( \Leftrightarrow 1 \le \frac{x}{y} \le 2\)

Khi đó \(P = \frac{{2\frac{x}{y} - \frac{x}{y} + 2}}{{\frac{{2x}}{y} - 1}} = f\left( {\frac{x}{y}} \right) \ge f\left( {\frac{3}{2}} \right) = \frac{5}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 4\overrightarrow {SG} \);

B. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = \overrightarrow {SG} \);

C. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 2\overrightarrow {SG} \);

D. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \).

Lời giải

Đáp án đúng là: D

Ta có: G là trọng tâm tam giác ABC nên:

\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)

\( \Rightarrow \overrightarrow {SA} - \overrightarrow {SG} + \overrightarrow {SB} - \overrightarrow {SG} + \overrightarrow {SC} - \overrightarrow {SG} = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} - 3\overrightarrow {SG} = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \)

Vậy \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \).

Câu 2

A. a > 0, b > 0, C > 0, d > 0;

B. a > 0, c > 0 > b, d < 0;

C. a > 0, b > 0, c > 0, d > 0;

D. a > 0, b < 0, c < 0, d > 0.

Lời giải

Đáp án đúng là: D

Dựa vào đồ thị ta có a > 0, đồ thị cắt Oy tại 1 điểm có tung độ dương nên d > 0, đồ thị có 2 cực trị trái dấu nên:

x1.x2 < 0 \( \Rightarrow \frac{c}{a} < 0\) c < 0

Câu 4

A. Q = b2;

B. \(Q = {b^{\frac{5}{9}}}\);

C. \(Q = {b^{ - \frac{4}{3}}}\);

D. \(Q = {b^{\frac{4}{3}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP