Câu hỏi:
17/08/2023 332Cho tứ diện ABCD có tất cả các cạnh đều bằng a. Gọi M là trung điểm của AB. Mp(P) qua M và song song với BC và CD cắt tứ diện theo 1 thiết diện là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: B
Gọi E và F lần lượt là trung điểm của AC và AD ta có ME // BC, EF // CD
\(\left\{ \begin{array}{l}M \in \left( P \right) \cap \left( {ABC} \right)\\\left( P \right)//BC \subset \left( {ABC} \right) \Rightarrow \left( P \right) \cap \left( {ABC} \right) = ME\\ME//BC\end{array} \right.\)
\(\left\{ \begin{array}{l}E \in \left( P \right) \subset \left( {ACD} \right)\\\left( P \right)//CD \subset \left( {ACD} \right) \Rightarrow \left( P \right) \cap \left( {ACD} \right) = EF\\EF//CD\end{array} \right.\)
(P) ∩ (ABD) = MF.
Khi đó thiết diện tạo bởi mp(P) và hình chóp là tam giác MEF
Ta có: \(ME = \frac{1}{2}BC = \frac{1}{2}a\); \(EF = \frac{1}{2}CD = \frac{1}{2}a\);
\(MF = \frac{1}{2}BD = \frac{1}{2}a\)
\( \Rightarrow ME = EF = MF = \frac{a}{2}\).
Vậy thiết diện là một tam giác đều.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax3 + bx2 + cx + d (a ≠ 0) có đồ thị nhứ hình vẽ dưới đây. Chọn khẳng định đúng về dấu của a, b, c, d.
Câu 2:
Cho hình chóp S.ABC, gọi G là trọng tâm tam giác ABC. Tìm mệnh đề đúng trong các mệnh đề sau:
Câu 3:
Cho hình nó (N) có đỉnh S, bán kính đáy bằng a và độ dài đường sinh bằng 4a. Gọi (T) là mặt cầu đi qua S và đường tròn đáy của (N). Bán kính của (T) bằng:
Câu 4:
Cho hàm số y = x4 + 8x2 + m có giá trị nhỏ nhất trên [1; 3] bằng 6. Tham số thực m bằng
Câu 5:
Tập nghiệm của bất phương trình \({\left( {\frac{2}{3}} \right)^x} > 0\) là
Câu 6:
Cho 2 số thực x, y thỏa mãn \({\log _2}\frac{{{x^2} + {y^2}}}{{3xy + {x^2}}} + {x^2} + 2{y^2} + 1 \le 3xy\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{{2{x^2} - xy + 2{y^2}}}{{2xy - {y^2}}}\).
Câu 7:
Cho hàm số y = x4 – 2mx2 + m. Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị:
về câu hỏi!