Câu hỏi:

17/08/2023 408

Cho hình tứ diện S.ABC có SA, SB, SC đôi một vuông góc. SA = 3a, SB = 2a, SC = a. Tính thể tích khối tứ diện S.ABC.

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Cho hình tứ diện S.ABC có SA, SB, SC đôi một vuông góc. SA = 3a, SB = 2a (ảnh 1)

Ta có SA SB, SA SC.

Do đó SA (SBC).

Suy ra: \(V = \frac{1}{3}.SA.{S_{SBC}} = \frac{1}{3}.SA.\frac{1}{2}.SB.SC = \frac{1}{3}.3a.\frac{1}{2}.2a.a = {a^3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y = ax3 + bx2 + cx + d (a ≠ 0) có đồ thị nhứ hình vẽ dưới đây. Chọn khẳng định đúng về dấu của a, b, c, d.

Cho hàm số y = ax^3 + bx^2 + cx + d (a khác 0) có đồ thị nhứ hình vẽ dưới đây (ảnh 1)

Xem đáp án » 17/08/2023 12,538

Câu 2:

Cho hình chóp S.ABC, gọi G là trọng tâm tam giác ABC. Tìm mệnh đề đúng trong các mệnh đề sau:

Xem đáp án » 17/08/2023 9,923

Câu 3:

Cho hình nó (N) có đỉnh S, bán kính đáy bằng a và độ dài đường sinh bằng 4a. Gọi (T) là mặt cầu đi qua S và đường tròn đáy của (N). Bán kính của (T) bằng:

Xem đáp án » 17/08/2023 4,850

Câu 4:

Cho hàm số y = x4 + 8x2 + m có giá trị nhỏ nhất trên [1; 3] bằng 6. Tham số thực m bằng

Xem đáp án » 17/08/2023 4,788

Câu 5:

Tập nghiệm của bất phương trình \({\left( {\frac{2}{3}} \right)^x} > 0\)

Xem đáp án » 17/08/2023 4,685

Câu 6:

Cho 2 số thực x, y thỏa mãn \({\log _2}\frac{{{x^2} + {y^2}}}{{3xy + {x^2}}} + {x^2} + 2{y^2} + 1 \le 3xy\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{{2{x^2} - xy + 2{y^2}}}{{2xy - {y^2}}}\).

Xem đáp án » 17/08/2023 2,897

Câu 7:

Cho hệ phương trình \[\left\{ \begin{array}{l}\left( {m - 1} \right)x + y = 2\\mx + y = m + 1\end{array} \right.\] với m là tham số.

Chứng minh rằng với mọi giá trị của m thì hệ phương trình luôn có nghiệm duy nhất (x; y) thỏa mãn 2x + y ≤ 3.

Xem đáp án » 12/07/2024 2,359

Bình luận


Bình luận