Câu hỏi:

17/08/2023 714 Lưu

Cho hình tứ diện S.ABC có SA, SB, SC đôi một vuông góc. SA = 3a, SB = 2a, SC = a. Tính thể tích khối tứ diện S.ABC.

A. \[\frac{{{a^3}}}{2}\];

B. 2a3;

C. a3;

D. 6a3.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Cho hình tứ diện S.ABC có SA, SB, SC đôi một vuông góc. SA = 3a, SB = 2a (ảnh 1)

Ta có SA SB, SA SC.

Do đó SA (SBC).

Suy ra: \(V = \frac{1}{3}.SA.{S_{SBC}} = \frac{1}{3}.SA.\frac{1}{2}.SB.SC = \frac{1}{3}.3a.\frac{1}{2}.2a.a = {a^3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 4\overrightarrow {SG} \);

B. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = \overrightarrow {SG} \);

C. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 2\overrightarrow {SG} \);

D. \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \).

Lời giải

Đáp án đúng là: D

Ta có: G là trọng tâm tam giác ABC nên:

\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)

\( \Rightarrow \overrightarrow {SA} - \overrightarrow {SG} + \overrightarrow {SB} - \overrightarrow {SG} + \overrightarrow {SC} - \overrightarrow {SG} = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} - 3\overrightarrow {SG} = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \)

Vậy \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \).

Câu 2

A. a > 0, b > 0, C > 0, d > 0;

B. a > 0, c > 0 > b, d < 0;

C. a > 0, b > 0, c > 0, d > 0;

D. a > 0, b < 0, c < 0, d > 0.

Lời giải

Đáp án đúng là: D

Dựa vào đồ thị ta có a > 0, đồ thị cắt Oy tại 1 điểm có tung độ dương nên d > 0, đồ thị có 2 cực trị trái dấu nên:

x1.x2 < 0 \( \Rightarrow \frac{c}{a} < 0\) c < 0

Câu 4

A. Q = b2;

B. \(Q = {b^{\frac{5}{9}}}\);

C. \(Q = {b^{ - \frac{4}{3}}}\);

D. \(Q = {b^{\frac{4}{3}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP