Câu hỏi:

17/08/2023 931

Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh bằng \(a\sqrt 2 \). Tam giác SAD cân tại S và mặt bên (SAD) vuông góc với mặt phẳng đáy. Biết thể tích khối chóp S.ABCD bằng \(\frac{4}{3}{a^3}\). Tính khoảng cách từ B đến mặt phẳng (SCD).

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Kẻ SHAD H là trung điểm của AD (∆SAD cân tại S).

Kéo dài BH CD = E.

\(\left\{ \begin{array}{l}\left( {SAD} \right) \bot \left( {ABCD} \right)\\SH \supset \left( {SAD} \right)\end{array} \right. \Rightarrow SH \bot \left( {ABCD} \right)\)

Xét tam giác EBC có:

\[\left\{ \begin{array}{l}HD\,{\rm{//}}\,BC\\HD = \frac{1}{2}BC\end{array} \right.\]

HD là đường trung bình của tam giác EBC.

H là trung điểm của BE.

\({V_{S.ABCD}} = \frac{1}{3}\,.\,SH\,.\,{S_{ABCD}}\)

\( \Leftrightarrow \frac{4}{3}{a^3} = \frac{1}{3}\,.\,SH\,.\,2{a^2} \Leftrightarrow SH = 2a\)

Kẻ HKSD d(H; (SCD)) = HK

Ta có \(\frac{{d\left( {H;\left( {SCD} \right)} \right)}}{{d\left( {B;\left( {SCD} \right)} \right)}} = \frac{{HE}}{{BE}} = \frac{1}{2}\)

Xét tam giác SHD vuông tại H có:

\(\frac{1}{{H{K^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{S{D^2}}} = \frac{1}{{4{a^2}}} + \frac{1}{{\frac{{{a^2}}}{2}}} = \frac{9}{{4{a^2}}}\)

\( \Rightarrow HK = \frac{{2a}}{3}\)

D(B;(SCD)) = 2d(H;(SCD)) = 2HK \( = \frac{{2.2a}}{3} = \frac{{4a}}{3}\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y = ax3 + bx2 + cx + d (a ≠ 0) có đồ thị nhứ hình vẽ dưới đây. Chọn khẳng định đúng về dấu của a, b, c, d.

Cho hàm số y = ax^3 + bx^2 + cx + d (a khác 0) có đồ thị nhứ hình vẽ dưới đây (ảnh 1)

Xem đáp án » 17/08/2023 13,127

Câu 2:

Cho hình chóp S.ABC, gọi G là trọng tâm tam giác ABC. Tìm mệnh đề đúng trong các mệnh đề sau:

Xem đáp án » 17/08/2023 11,857

Câu 3:

Tập nghiệm của bất phương trình \({\left( {\frac{2}{3}} \right)^x} > 0\)

Xem đáp án » 17/08/2023 5,371

Câu 4:

Cho hình nó (N) có đỉnh S, bán kính đáy bằng a và độ dài đường sinh bằng 4a. Gọi (T) là mặt cầu đi qua S và đường tròn đáy của (N). Bán kính của (T) bằng:

Xem đáp án » 17/08/2023 4,957

Câu 5:

Cho hàm số y = x4 + 8x2 + m có giá trị nhỏ nhất trên [1; 3] bằng 6. Tham số thực m bằng

Xem đáp án » 17/08/2023 4,933

Câu 6:

Rút gọn biểu thức \(Q = {b^{\frac{5}{3}}}:\sqrt[3]{b}\) với b > 0

Xem đáp án » 17/08/2023 4,000

Câu 7:

Cho hệ phương trình \[\left\{ \begin{array}{l}\left( {m - 1} \right)x + y = 2\\mx + y = m + 1\end{array} \right.\] với m là tham số.

Chứng minh rằng với mọi giá trị của m thì hệ phương trình luôn có nghiệm duy nhất (x; y) thỏa mãn 2x + y ≤ 3.

Xem đáp án » 12/07/2024 3,291