Câu hỏi:
17/08/2023 229Cho lăng trụ ABCD.A’B’C’D’ có ABCD là hình chữ nhật có AA’ = A’B = A’D. Tính thể tích của khối lăng trụ ABCD.A’B’C’D’ biết AB = a, \(AD = a\sqrt 3 \), AA’ = 2a.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có: AA’ = A’B = A’D.
Khi đó, hình chiếu vuông góc của A’ lên (ABD) là tâm đường tròn ngoại tiếp tam giác ABD.
Mà ABCD là hình chữ nhật nên am giác ABD vuông tại A.
Suy ra tâm đường tròn ngoại tiếp tam giác ABD là trung điểm của BD.
Do đó, hình chiếu vuông góc của A’ lên (ABD) là trung điểm của BD và cũng là giao điểm O của AC với BD.
Ta có: \(OA = \frac{{BD}}{2} = \frac{{\sqrt {A{B^2} + A{D^2}} }}{2} = \frac{{\sqrt {{a^2} + {{\left( {a\sqrt 3 } \right)}^2}} }}{2} = a\)
A’O ⊥ (ABCD) ⇒ A’O⊥OA ⇒ ∆AOA’ vuông tại O
\(A'O = \sqrt {A'{A^2} - O{A^2}} = \sqrt {{{(2a)}^2} - {a^2}} = a\sqrt 3 \)
Thể tích của khối lăng trụ ABCD.A’B’C’D’ là:
\(V = {S_{ABCD}}.OA' = AB.AD.OA' = a.a\sqrt 3 .a\sqrt 3 = 3{a^3}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = ax3 + bx2 + cx + d (a ≠ 0) có đồ thị nhứ hình vẽ dưới đây. Chọn khẳng định đúng về dấu của a, b, c, d.
Câu 2:
Cho hình chóp S.ABC, gọi G là trọng tâm tam giác ABC. Tìm mệnh đề đúng trong các mệnh đề sau:
Câu 3:
Cho hình nó (N) có đỉnh S, bán kính đáy bằng a và độ dài đường sinh bằng 4a. Gọi (T) là mặt cầu đi qua S và đường tròn đáy của (N). Bán kính của (T) bằng:
Câu 4:
Cho hàm số y = x4 + 8x2 + m có giá trị nhỏ nhất trên [1; 3] bằng 6. Tham số thực m bằng
Câu 5:
Tập nghiệm của bất phương trình \({\left( {\frac{2}{3}} \right)^x} > 0\) là
Câu 6:
Cho 2 số thực x, y thỏa mãn \({\log _2}\frac{{{x^2} + {y^2}}}{{3xy + {x^2}}} + {x^2} + 2{y^2} + 1 \le 3xy\). Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{{2{x^2} - xy + 2{y^2}}}{{2xy - {y^2}}}\).
Câu 7:
Cho hàm số y = x4 – 2mx2 + m. Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị:
về câu hỏi!