Câu hỏi:
13/07/2024 13,150
Trong các đẳng thức sau, đẳng thức nào sai?
A. \(\sin \left( {\frac{\pi }{2} - x} \right) = \cos x\).
B. \(\sin \left( {\frac{\pi }{2} + x} \right) = \cos x\).
C. \(\tan \left( {\frac{\pi }{2} - x} \right) = \cot x\).
D. \(\tan \left( {\frac{\pi }{2} + x} \right) = \cot x\).
Trong các đẳng thức sau, đẳng thức nào sai?
A. \(\sin \left( {\frac{\pi }{2} - x} \right) = \cos x\).
B. \(\sin \left( {\frac{\pi }{2} + x} \right) = \cos x\).
C. \(\tan \left( {\frac{\pi }{2} - x} \right) = \cot x\).
D. \(\tan \left( {\frac{\pi }{2} + x} \right) = \cot x\).
Câu hỏi trong đề: Giải SBT Toán 11 KNTT Bài tập cuối chương I có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: D
Theo mối quan hệ giữa giá trị lượng giác của hai góc phụ nhau, ta có:
\(\sin \left( {\frac{\pi }{2} - x} \right) = \cos x\); \(\tan \left( {\frac{\pi }{2} - x} \right) = \cot x\) nên đáp án A và C đúng.
Ta có \(\sin \left( {\frac{\pi }{2} + x} \right) = \cos \left[ {\frac{\pi }{2} - \left( {\frac{\pi }{2} + x} \right)} \right] = \cos \left( { - x} \right) = \cos x\) nên đáp án B đúng.
Lại có \(\tan \left( {\frac{\pi }{2} + x} \right) = \cot \left[ {\frac{\pi }{2} - \left( {\frac{\pi }{2} + x} \right)} \right] = \cot \left( { - x} \right) = - \cot x\) nên đáp án D sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đáp án đúng là: C
Ta có \(2\cos x = \sqrt 3 \)\( \Leftrightarrow \cos x = \frac{{\sqrt 3 }}{2}\)\( \Leftrightarrow \cos x = \cos \frac{\pi }{6}\)\( \Leftrightarrow x = \pm \frac{\pi }{6} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\).
Vì \(x \in \left[ {0;\,\frac{{5\pi }}{2}} \right]\) nên:
+ Với \(x = \frac{\pi }{6} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\) thì \(0 \le \frac{\pi }{6} + k2\pi \le \frac{{5\pi }}{2} \Leftrightarrow - \frac{1}{{12}} \le k \le \frac{7}{6}\) , mà k ∈ ℤ, từ đó suy ra k ∈ {0; 1}.
+ Với \(x = \frac{\pi }{6} + k2\pi \,\,\,\left( {k \in \mathbb{Z}} \right)\) thì \(0 \le - \frac{\pi }{6} + k2\pi \le \frac{{5\pi }}{2} \Leftrightarrow \frac{1}{{12}} \le k \le \frac{4}{3}\), mà k ∈ ℤ, từ đó suy ra k = 1.
Vậy phương trình \(2\cos x = \sqrt 3 \) có 3 nghiệm trên đoạn \(\left[ {0;\,\frac{{5\pi }}{2}} \right]\).
Lời giải
Lời giải
Đáp án đúng là: D
Công thức nhân đôi:
sin 2a = 2sin a cos a.
cos 2a = cos2 a – sin2 a = 1 – 2sin2 a.
tan 2a = \(\frac{{2\tan a}}{{1 - {{\tan }^2}a}}\).
Vậy đáp án D sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.