Câu hỏi:

24/08/2023 5,233 Lưu

Gọi A, B lần lượt là điểm cực đại và điểm cực tiểu của đồ thị hàm số y = x3 − 3x2 + 2. Trung điểm I của đoạn thẳng AB có tọa độ nào dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

TXĐ: D =

Ta có:  y'=3x26x=0x=0y=2x=2y=2

Mà do hàm số có a = 1 > 0 nên cực tiểu của hàm số là x = 2 và cực đại của hàm số là x = 0.

Suy ra cực đại và điểm cực tiểu của đồ thị hàm số là A(0; 2) và B(2; −2).

Gọi I là trung điểm của đoạn thẳng nối hai điểm cực trị A, B ta có:

xI=xA+xB2yI=yA+yB2xI=0+22yI=2+22xI=1yI=0

Vậy I(1; 0).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương trình hoành độ giao điểm của đồ thị f (x) và g (x) là: 

ax3+bx2+cx12=dx2+ex+1

ax3+bdx2+cex32=0   *

Do đồ thị của hai hàm số cắt nhau tại ba điểm suy ra phương trình (*) có ba nghiệm là −3; −1; 1.

Ta được ax+3x+1x1=ax3+bdx2+cex32

ax+3x21=ax3+bdx2+cex32

ax3+3ax2ax3a=ax3+bdx2+cex32

Đồng nhất hai vế ta suy ra:

3a=bda=ce3a=32a=12bd=32ce=12

Vậy diện tích hình phẳng cần tìm là

S=3112x3+32x212x32dx+1112x332x2+12x+32dx

=x48+x32x243x231+x48x32+x24+3x211

=148+1321243.12348332+324+3.32

148132+124+3.12+148+1321243.12

=181214+32818+272+94921812+14+32+181214+32= 4.

Lời giải

a) Áp dụng định lí Pytago vào tam giác ABC vuông tại B có:

 AC=AB2+BC2=32+42=5

 AB+AD=ACAB+AD=AC=AC=5

b) Đặt  T=2AB+3AD

 T2=4AB2+9AD2+12AB.AD=4AB2+9AD2 (Do AB ^ AD)

Þ T2 = 4.32 + 9.42 = 180

 T=65

Vậy  T=2AB+3AD=65

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP