Câu hỏi:
13/07/2024 247Cho tam giác ABC cân tại A, góc và AB = 4 cm. Tính thể tích khối tròn xoay lớn nhất có thể khi ta quay tam giác ABC xung quanh đường thẳng chứa một cạnh của tam giác ABC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Áp dụng định lí cosin trong tam giác ABC, ta có:
Gọi H là trung điểm của BC.
Khi quay tam giác ABC quanh cạnh BC ta được 2 hình nón có chung bán kính đáy AH, đường cao lần lượt là BH và CH với:
AH = AB.cos 60° = 2
Khi quay tam giác ABC quanh AB ta được khối tròn xoay như sau:
Gọi D là điểm đối xứng C qua AB, H là trung điểm của CD.
Ta có:
Do điểm B và C có vai trò như nhau nên khi quay tam giác ABC quanh AC ta cũng nhận được khối tròn xoay có thể tích bằng 16p.
Vậy thể tích lớn nhất có thể được khi quay tam giác ABC quanh một đường thẳng chứa cạnh của tam giác ABC là 16π.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai hàm số và g (x) = dx2 + ex + 1 (a, b, c, d, e Î ℝ). Biết rằng đồ thị hàm số y = f (x) và y = g (x) cắt nhau tại ba điểm có hoành độ lần lượt là −3; −1; 1 (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng
Câu 2:
Xét các số phức z thỏa mãn . Trên mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn của các số phức là một đường tròn bán kính bằng bao nhiêu?
Câu 3:
Cho hình chữ nhật ABCD, AB = 3, AD = 4. Hãy tính độ lớn của
a)
b)
Câu 4:
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC
a) Chứng minh:
b) Xác định điểm O sao cho .
Câu 5:
Với các chữ số 2, 3, 4, 5, 6, có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau trong đó hai chữ số 2, 3 không đứng cạnh nhau?
Câu 6:
Cho hàm số f (x) có đạo hàm f ¢(x) = x(x + 2)2, "x Î ℝ. Số điểm cực trị của hàm số đã cho là:
Câu 7:
Cho hình nón có bán kính bằng 5 và góc ở đỉnh bằng 60°. Diện tích xung quanh của hình nón đã cho bằng:
về câu hỏi!