Câu hỏi:

13/07/2024 411 Lưu

Cho tam giác ABC cân tại A, góc  BAC^=120° và AB = 4 cm. Tính thể tích khối tròn xoay lớn nhất có thể khi ta quay tam giác ABC xung quanh đường thẳng chứa một cạnh của tam giác ABC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Áp dụng định lí cosin trong tam giác ABC, ta có: 

BC2=AB2+AC22AB.AC.cosBAC^

=42+422.4.4.12=48

BC=43

Gọi H là trung điểm của BC.

Khi quay tam giác ABC quanh cạnh BC ta được 2 hình nón có chung bán kính đáy AH, đường cao lần lượt là BH và CH với:

Media VietJack

AH = AB.cos 60° =

BH=CH=12BC=432=23

V=13π.AH2.BH+13π.AH2.CH

=13π.AH2.BH+CH

=13π.22.23+23=16π33

Khi quay tam giác ABC quanh AB ta được khối tròn xoay như sau:

Gọi D là điểm đối xứng C qua AB, H là trung điểm của CD.

Media VietJack

Ta có:  ABC^=180°120°2=30°

HC=BC.sin30°=43.12=23

BH=BC.cos30°=43.32=6

V=13π.HC2.BH13π.HC2.AH

=13π.HC2.AB=13π.232.4=16π

Do điểm B và C có vai trò như nhau nên khi quay tam giác ABC quanh AC ta cũng nhận được khối tròn xoay có thể tích bằng 16p.

Vậy thể tích lớn nhất có thể được khi quay tam giác ABC quanh một đường thẳng chứa cạnh của tam giác ABC là 16π.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương trình hoành độ giao điểm của đồ thị f (x) và g (x) là: 

ax3+bx2+cx12=dx2+ex+1

ax3+bdx2+cex32=0   *

Do đồ thị của hai hàm số cắt nhau tại ba điểm suy ra phương trình (*) có ba nghiệm là −3; −1; 1.

Ta được ax+3x+1x1=ax3+bdx2+cex32

ax+3x21=ax3+bdx2+cex32

ax3+3ax2ax3a=ax3+bdx2+cex32

Đồng nhất hai vế ta suy ra:

3a=bda=ce3a=32a=12bd=32ce=12

Vậy diện tích hình phẳng cần tìm là

S=3112x3+32x212x32dx+1112x332x2+12x+32dx

=x48+x32x243x231+x48x32+x24+3x211

=148+1321243.12348332+324+3.32

148132+124+3.12+148+1321243.12

=181214+32818+272+94921812+14+32+181214+32= 4.

Lời giải

a) Áp dụng định lí Pytago vào tam giác ABC vuông tại B có:

 AC=AB2+BC2=32+42=5

 AB+AD=ACAB+AD=AC=AC=5

b) Đặt  T=2AB+3AD

 T2=4AB2+9AD2+12AB.AD=4AB2+9AD2 (Do AB ^ AD)

Þ T2 = 4.32 + 9.42 = 180

 T=65

Vậy  T=2AB+3AD=65

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP