Câu hỏi:
13/07/2024 320Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M và N lần lượt là trung điểm của BC và CD (tham khảo hình vẽ bên). Tính bán kính R của khối cầu ngoại tiếp hình chóp S.CMN.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi H là trung điểm của cạnh AB nên SH ^ AB
Mặt khác (SAB) ^ (ABCD) Þ SH ^ (ABCD)
Gọi F là trung điểm của MN, ΔCMN vuông tại C nên F là tâm đường tròn ngoại tiếp ΔCMN
Qua F kẻ d1 // SH Þ d1 ^ (ABCD)
Ta có:
+)
+)
+)
Suy ra SN2 + MN2 = SM2
Do đó tam giác SMN vuông tại N
Gọi E là trun điểm của SM, qua E kẻ d2 ^ (SMN) sao cho d2 Ç d1 = I là tâm mặt cầu ngoại tiếp chóp S.CMN.
Dễ thấy ΔHMN vuông cân tại N
Ta có:
Có EI ^ (SMN) Þ EI ^ EF
Do đó ∆EIF vuông tại E
.
Xét tam giác vuông SIE có:
.
Vậy bán kính R của khối cầu ngoại tiếp hình chóp S.CMN là: .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai hàm số và g (x) = dx2 + ex + 1 (a, b, c, d, e Î ℝ). Biết rằng đồ thị hàm số y = f (x) và y = g (x) cắt nhau tại ba điểm có hoành độ lần lượt là −3; −1; 1 (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng
Câu 2:
Xét các số phức z thỏa mãn . Trên mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn của các số phức là một đường tròn bán kính bằng bao nhiêu?
Câu 3:
Cho hình chữ nhật ABCD, AB = 3, AD = 4. Hãy tính độ lớn của
a)
b)
Câu 4:
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC
a) Chứng minh:
b) Xác định điểm O sao cho .
Câu 5:
Với các chữ số 2, 3, 4, 5, 6, có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau trong đó hai chữ số 2, 3 không đứng cạnh nhau?
Câu 6:
Cho hàm số f (x) có đạo hàm f ¢(x) = x(x + 2)2, "x Î ℝ. Số điểm cực trị của hàm số đã cho là:
Câu 7:
Cho hình nón có bán kính bằng 5 và góc ở đỉnh bằng 60°. Diện tích xung quanh của hình nón đã cho bằng:
về câu hỏi!