Câu hỏi:

05/03/2020 254

Cho x, y > 0 thỏa mãn log(x + 2y) = log x + log y. Khi đó, giá trị nhỏ nhất của biểu thức

 P=x21+2y+4y21+x là:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Ta có log(x + 2y) = log x + log y

<=> log 2 (x+2y) = log 2xy

<=> 2 (x+2y) = 2xy (*).

Đt a=x>0b=2y>0, khi đó

*2a+b=ab

và P=a21+b+b21+aa+b2a+b+2

Lại có aba+b242a+ba+b24a+b8.

Đặt t = a + b, do đó

Pft=t2t+2.

Xét hàm s ft=t2t+2trên [8;+)

có f't=t2+2tt+22>0;8

Suy ra f(t) là hàm số đồng biến trên [8;+)

Vậy gía trị nhỏ nhất của biểu thức P là 325.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biết rằng 9x + 9–x = 23. Khi đó biểu thức A=5+3x+3-x1-3x-3-x=ab với ab là phân số tối giản và a,bTích a.b có giá trị bằng

Xem đáp án » 05/03/2020 28,809

Câu 2:

Số nghiệm của phương trình ln x + ln(3x – 2) = 0 là?

Xem đáp án » 23/02/2021 24,485

Câu 3:

Đặt m = log 2 n = log 7. Hãy biểu diễn log 61257 theo m và n.

Xem đáp án » 05/03/2020 12,138

Câu 4:

Nếu log7 x = log7 ab2 – log7 a3b (a, b > 0) thì x nhận giá trị là

Xem đáp án » 05/03/2020 11,880

Câu 5:

Cho fx=alnx+x2+1+bsinx+6 với a,bBiết rằng f(log(log e)) = 2. Tính giá trị của f(log(ln10)).

Xem đáp án » 15/02/2020 11,583

Câu 6:

Biết rằng phương trình 3log22 x-log2 x-1=0 có hai nghiệm là a, b. Khẳng định nào sau đây là đúng?

Xem đáp án » 05/03/2020 11,339

Câu 7:

Bất phương trình ln(2x2 + 3) > ln(x2 + ax + 1) nghiệm đúng với mọi số thực x khi:

Xem đáp án » 15/02/2020 11,126

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store